Improvement to Geometric Linearization of gpICA Algortihm by Compensation and Multiple Points

E. Torres, P. Ulloa, A. Gaona
{"title":"Improvement to Geometric Linearization of gpICA Algortihm by Compensation and Multiple Points","authors":"E. Torres, P. Ulloa, A. Gaona","doi":"10.1109/FGCNS.2008.52","DOIUrl":null,"url":null,"abstract":"In this paper we show two modifications of the gpICA (geometric post non-linear independent component analysis) algorithm. gpICA algorithm is a novel method to solve the PNL (post non-linear) scheme. We propose these modifications to improve the mean squared error, the correlation of the recovered signals and algorithm reliability. The first improvement, called compensation, takes advantage from the implicit information given by the point to be linearized. On the other hand, while the original gpICA algorithm uses two sets of two points to make an update, our second modification uses two sets of four points. We present experimental results which validates the effectiveness of each modification.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we show two modifications of the gpICA (geometric post non-linear independent component analysis) algorithm. gpICA algorithm is a novel method to solve the PNL (post non-linear) scheme. We propose these modifications to improve the mean squared error, the correlation of the recovered signals and algorithm reliability. The first improvement, called compensation, takes advantage from the implicit information given by the point to be linearized. On the other hand, while the original gpICA algorithm uses two sets of two points to make an update, our second modification uses two sets of four points. We present experimental results which validates the effectiveness of each modification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用补偿和多点改进gpICA算法的几何线性化
在本文中,我们展示了gpICA(几何后非线性独立分量分析)算法的两个修改。gpICA算法是一种求解PNL(后非线性)格式的新方法。我们提出这些改进是为了提高均方误差、恢复信号的相关性和算法的可靠性。第一个改进称为补偿,它利用了待线性化点给出的隐式信息。另一方面,虽然原始的gpICA算法使用两组两点进行更新,但我们的第二次修改使用两组四点进行更新。最后给出了实验结果,验证了每次修正的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Event Recognition for Visual Surveillance Systems Lossless Information Hiding Scheme Based on Neighboring Correlation HSV Color Space and Face Detection Based Objectionable Image Detecting User Interface Concurrency in Web Service Client Systems Visuo-Motor Coordination in Bipedal Humanoid Robot Walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1