An asymptotic property of model selection criteria

Yuhong Yang, A. Barron
{"title":"An asymptotic property of model selection criteria","authors":"Yuhong Yang, A. Barron","doi":"10.1109/WITS.1994.513930","DOIUrl":null,"url":null,"abstract":"Probability models are estimated by use of penalized likelihood criteria related to the Akaike (1972) information criteria (AIC) and the minimum description length (MDL). The asymptotic risk of the density estimator is determined, under conditions on the penalty term, and is shown to be minimax optimal. As an application, we show that the optimal rate of convergence is achieved for the density in certain smooth nonparametric families without knowing the smooth parameters in advance.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

Probability models are estimated by use of penalized likelihood criteria related to the Akaike (1972) information criteria (AIC) and the minimum description length (MDL). The asymptotic risk of the density estimator is determined, under conditions on the penalty term, and is shown to be minimax optimal. As an application, we show that the optimal rate of convergence is achieved for the density in certain smooth nonparametric families without knowing the smooth parameters in advance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型选择准则的渐近性质
使用与Akaike(1972)信息准则(AIC)和最小描述长度(MDL)相关的惩罚似然准则来估计概率模型。在惩罚项存在的条件下,确定了密度估计器的渐近风险,并证明了其为极小极大最优。作为一个应用,我们证明了在不事先知道光滑参数的情况下,对于某些光滑非参数族的密度可以达到最优收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1