Large eddy simulation of inclined round jet issuing into cross-flow

E. Sakai, Toshihiko Takahashi, H. Watanabe
{"title":"Large eddy simulation of inclined round jet issuing into cross-flow","authors":"E. Sakai, Toshihiko Takahashi, H. Watanabe","doi":"10.1299/KIKAIB.78.1107","DOIUrl":null,"url":null,"abstract":"For understanding of film cooling flow fields on a gas turbine blade, this paper reports on a series of large-eddy simulations of an inclined round jet issuing into a crossflow. Simulations were performed at four blowing ratio conditions, BR=0.1, 0.5, 0.7 and 1.0 and Reynolds number, Re=15,300, based on crossflow velocity and film cooling hole diameter. Results showed that cooling jet flow structure drastically changed with blowing ratio. A pair of rear vortex and hairpin vortex were observed for BR=0.1. A periodic ejection of horseshoe vortex, a pair of hanging vortex, a pair of rear vortex and hairpin vortex were observed for BR=0.5. Similar vortical structures to BR=0.5 were observed for BR=0.7 although horseshoe vortex remained at a leading edge of the hole exit. For BR=1.0, in addition to the former mentioned vortices, spanwise rollers and vertical streaks were observed on an upstream edge of the jet. It was, consequently understood that the ubiquitous counter-rotating vortex pair which can be defined in the time-averaged flow field was actually originated in the different vortical structures with varying BR conditions.","PeriodicalId":331123,"journal":{"name":"Transactions of the Japan Society of Mechanical Engineers. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society of Mechanical Engineers. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/KIKAIB.78.1107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For understanding of film cooling flow fields on a gas turbine blade, this paper reports on a series of large-eddy simulations of an inclined round jet issuing into a crossflow. Simulations were performed at four blowing ratio conditions, BR=0.1, 0.5, 0.7 and 1.0 and Reynolds number, Re=15,300, based on crossflow velocity and film cooling hole diameter. Results showed that cooling jet flow structure drastically changed with blowing ratio. A pair of rear vortex and hairpin vortex were observed for BR=0.1. A periodic ejection of horseshoe vortex, a pair of hanging vortex, a pair of rear vortex and hairpin vortex were observed for BR=0.5. Similar vortical structures to BR=0.5 were observed for BR=0.7 although horseshoe vortex remained at a leading edge of the hole exit. For BR=1.0, in addition to the former mentioned vortices, spanwise rollers and vertical streaks were observed on an upstream edge of the jet. It was, consequently understood that the ubiquitous counter-rotating vortex pair which can be defined in the time-averaged flow field was actually originated in the different vortical structures with varying BR conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斜圆射流向横流喷射的大涡模拟
为了更好地理解燃气轮机叶片的气膜冷却流场,本文报道了一系列斜圆射流进入横流的大涡模拟。以横流速度和气膜冷却孔直径为参数,分别在BR=0.1、0.5、0.7和1.0、雷诺数Re=15,300 4种吹气比条件下进行了模拟。结果表明,随着吹气比的增大,冷却射流结构发生了较大的变化。BR=0.1时,出现一对后涡和发夹涡。当BR=0.5时,观察到马蹄涡、一对悬涡、一对后涡和发夹涡的周期性喷射。当BR=0.7时,虽然马蹄形涡仍然存在于孔出口前缘,但仍观察到与BR=0.5相似的涡结构。当BR=1.0时,除了前面提到的涡外,在射流的上游边缘还观察到展向滚子和垂直条纹。由此认识到,时间平均流场中普遍存在的逆旋涡对实际上起源于不同BR条件下的不同涡结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SSRT and fatigue crack growth properties of two types of high strength austenitic stainless steels in high pressure hydrogen gas Influence of Initial Systems on the Renewal Planning of Energy Supply Systems for a Hospital Fdtd analysis of nanoscale temperature distribution induced by near-Field photothermal effect A study on equivalence-ratio dependence of minimum ignition energy based on initial burning velocity An analysis of quantum effect on the p-V-T relation of cryogenic hydrogen using centroid molecular dynamics method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1