Shinya Furukawa, I. S. A. Halim, Minoru Watanabe, F. Kobayashi
{"title":"Direct optical communication on an optically reconfigurable gate array","authors":"Shinya Furukawa, I. S. A. Halim, Minoru Watanabe, F. Kobayashi","doi":"10.1109/FGCT.2016.7605065","DOIUrl":null,"url":null,"abstract":"As one type of field programmable gate array (FPGA), optically reconfigurable gate arrays (ORGAs) have been undergoing continual development. ORGAs are optoelectronic devices consisting of a holographic memory, a laser array, a programmable gate array. Since the storage capacity of such holographic memory is greater than that of two-dimensional semiconductor memory, an ORGA can accommodate more huge gates and provide higher performance than FPGAs. A programmable gate array of an ORGA has numerous photodiodes that can be reconfigured optically using configuration contexts on a holographic memory. Although the photodiodes are normally used only for a configuration procedure, the photodiodes are useful for direct input of optical communication signals. This paper therefore presents a demonstration of optical communication on ORGA's programmable gate array.","PeriodicalId":378077,"journal":{"name":"2016 Fifth International Conference on Future Generation Communication Technologies (FGCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fifth International Conference on Future Generation Communication Technologies (FGCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCT.2016.7605065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As one type of field programmable gate array (FPGA), optically reconfigurable gate arrays (ORGAs) have been undergoing continual development. ORGAs are optoelectronic devices consisting of a holographic memory, a laser array, a programmable gate array. Since the storage capacity of such holographic memory is greater than that of two-dimensional semiconductor memory, an ORGA can accommodate more huge gates and provide higher performance than FPGAs. A programmable gate array of an ORGA has numerous photodiodes that can be reconfigured optically using configuration contexts on a holographic memory. Although the photodiodes are normally used only for a configuration procedure, the photodiodes are useful for direct input of optical communication signals. This paper therefore presents a demonstration of optical communication on ORGA's programmable gate array.