Improvements in LTE-Advanced Time Series Prediction with Dimensionality Reduction Algorithms

A. Mercader, Jonathan Ah Sue, R. Hasholzner, J. Brendel
{"title":"Improvements in LTE-Advanced Time Series Prediction with Dimensionality Reduction Algorithms","authors":"A. Mercader, Jonathan Ah Sue, R. Hasholzner, J. Brendel","doi":"10.1109/5GWF.2018.8516973","DOIUrl":null,"url":null,"abstract":"Power consumption is a key challenge for LTE-Advanced or future 5G mobile devices. Prediction of control channel signaling messages during an active connection with the network is a promising technique to improve the energy performance of LTE-A mobile devices and will also apply to future 5G devices due to the similarities between LTE-A and 5G New Radio (NR) standards in scheduling and controlling data transmissions. To reduce the prediction’s computational complexity and thus, the power consumed by the predictor itself, various dimensionality reduction algorithms are evaluated in this paper. Specific windowing and normalization pre-processing steps are proposed to support the heterogeneous binary and integer time series data of LTE control channel messages. Using a simple Feed Forward Neural Network (FFNN) predictor, four dimensionality reduction algorithms, Principal Component Analysis (PCA), Independent Component Analysis (ICA), Autoencoder (AE), and Deep AE, are compared with respect to the prediction accuracy. Experiments based on live network data show that PCA achieves the best performance and allows to successfully reduce LTE-A control channel time series data from 450 to 45 dimensions without degrading the prediction accuracy compared to a FFNN predictor without dimensionality reduction.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8516973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Power consumption is a key challenge for LTE-Advanced or future 5G mobile devices. Prediction of control channel signaling messages during an active connection with the network is a promising technique to improve the energy performance of LTE-A mobile devices and will also apply to future 5G devices due to the similarities between LTE-A and 5G New Radio (NR) standards in scheduling and controlling data transmissions. To reduce the prediction’s computational complexity and thus, the power consumed by the predictor itself, various dimensionality reduction algorithms are evaluated in this paper. Specific windowing and normalization pre-processing steps are proposed to support the heterogeneous binary and integer time series data of LTE control channel messages. Using a simple Feed Forward Neural Network (FFNN) predictor, four dimensionality reduction algorithms, Principal Component Analysis (PCA), Independent Component Analysis (ICA), Autoencoder (AE), and Deep AE, are compared with respect to the prediction accuracy. Experiments based on live network data show that PCA achieves the best performance and allows to successfully reduce LTE-A control channel time series data from 450 to 45 dimensions without degrading the prediction accuracy compared to a FFNN predictor without dimensionality reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用降维算法改进LTE-Advanced时间序列预测
功耗是LTE-Advanced或未来5G移动设备面临的关键挑战。在主动连接网络期间预测控制信道信令消息是一种很有前途的技术,可以提高LTE-A移动设备的能源性能,并且由于LTE-A和5G新无线电(NR)标准在调度和控制数据传输方面的相似性,因此也将适用于未来的5G设备。为了降低预测的计算复杂度,从而降低预测器本身所消耗的能量,本文对各种降维算法进行了评估。针对LTE控制信道消息的异构二进制和整数时间序列数据,提出了具体的加窗和归一化预处理步骤。利用简单的前馈神经网络(FFNN)预测器,比较了主成分分析(PCA)、独立成分分析(ICA)、自动编码器(AE)和深度AE四种降维算法的预测精度。基于实时网络数据的实验表明,与没有降维的FFNN预测器相比,PCA达到了最好的性能,并且可以成功地将LTE-A控制信道时间序列数据从450维降至45维,而不会降低预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Inequalities with 5G Internet Light Network Slice CHRONOS: A Cloud based Hybrid RF-Optical Network Over Synchronous Links Using Non-Orthogonal Multiplexing for In-Band Full-Duplex Backhaul for 5G Broadcasting Massive Machine Type Communications over 5G using Lean Protocols and Edge Proxies Adaptive Multiplicity Codes based PIR Protocol for Multi-Cloud Plateform Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1