Mismatched Estimation of Non-Symmetric Rank-One Matrices Under Gaussian Noise

Farzad Pourkamali, N. Macris
{"title":"Mismatched Estimation of Non-Symmetric Rank-One Matrices Under Gaussian Noise","authors":"Farzad Pourkamali, N. Macris","doi":"10.1109/ISIT50566.2022.9834858","DOIUrl":null,"url":null,"abstract":"We consider the estimation of a n×m matrix u∗v∗T observed through an additive Gaussian noise channel, a problem that frequently arises in statistics and machine learning. We investigate a scenario involving mismatched Bayesian inference in which the statistician is unaware of true prior and uses an assumed prior. We derive the exact analytic expression for the asymptotic mean squared error (MSE) in the large system size limit for the particular case of Gaussian priors and additive noise. Our formulas demonstrate that in the mismatched case, estimation is still possible. Additionally, the minimum MSE (MMSE) can be obtained by selecting a non-trivial set of parameters beyond the matched parameters. Our technique is based on the asymptotic behavior of spherical integrals for rectangular matrices. Our method can be extended to non-rotation-invariant distributions for the true prior but requires rotation invariance for the statistician’s assumed prior.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the estimation of a n×m matrix u∗v∗T observed through an additive Gaussian noise channel, a problem that frequently arises in statistics and machine learning. We investigate a scenario involving mismatched Bayesian inference in which the statistician is unaware of true prior and uses an assumed prior. We derive the exact analytic expression for the asymptotic mean squared error (MSE) in the large system size limit for the particular case of Gaussian priors and additive noise. Our formulas demonstrate that in the mismatched case, estimation is still possible. Additionally, the minimum MSE (MMSE) can be obtained by selecting a non-trivial set of parameters beyond the matched parameters. Our technique is based on the asymptotic behavior of spherical integrals for rectangular matrices. Our method can be extended to non-rotation-invariant distributions for the true prior but requires rotation invariance for the statistician’s assumed prior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯噪声下非对称秩一矩阵的不匹配估计
我们考虑通过加性高斯噪声信道观察到的n×m矩阵u∗v∗T的估计,这是统计学和机器学习中经常出现的问题。我们研究了一个涉及不匹配贝叶斯推理的场景,其中统计学家不知道真实先验并使用假设先验。针对高斯先验和加性噪声的特殊情况,导出了大系统尺寸极限下的渐近均方误差(MSE)的精确解析表达式。我们的公式表明,在不匹配的情况下,估计仍然是可能的。此外,可以通过选择匹配参数之外的非平凡参数集来获得最小MSE (MMSE)。我们的技术是基于球面积分对矩形矩阵的渐近行为。我们的方法可以扩展到真实先验的非旋转不变性分布,但需要统计学家假设先验的旋转不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1