{"title":"Study on the online learning evaluation based on 2D and 3D image processing technology","authors":"Tongyao Ju, Xiangping Shen, Jun Yu","doi":"10.1117/12.2671835","DOIUrl":null,"url":null,"abstract":"In recent years, the outbreak of the COVID-19 epidemic has posed a serious threat to the life safety of people around the world, which has also led to the development of a series of online learning assessment technologies. Through the research and development of a variety of online learning platforms such as WeChat, Tencent Classroom and Netease Cloud Classroom, schools can carry out online learning assessment, which also promotes the rapid development of online learning technology. Through 2D and 3D recognition technology, the online learning platform can recognize face and pose changes. Based on 2D and 3D image processing technology, we can evaluate students' online learning, which will identify students' learning state and emotion. Through the granulation of teaching evaluation, online learning platform can accurately evaluate and analyze the teaching process, which can realize real-time teaching evaluation of students' learning status, including no one, many people, distraction and fatigue. Through relevant algorithms, the online learning platform can realize the assessment of students' head posture, which will give real-time warning of learning fatigue. Firstly, this paper analyzes the framework of online learning quality assessment. Then, this paper analyzes the face recognition and head pose recognition technology. Finally, some suggestions are put forward.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the outbreak of the COVID-19 epidemic has posed a serious threat to the life safety of people around the world, which has also led to the development of a series of online learning assessment technologies. Through the research and development of a variety of online learning platforms such as WeChat, Tencent Classroom and Netease Cloud Classroom, schools can carry out online learning assessment, which also promotes the rapid development of online learning technology. Through 2D and 3D recognition technology, the online learning platform can recognize face and pose changes. Based on 2D and 3D image processing technology, we can evaluate students' online learning, which will identify students' learning state and emotion. Through the granulation of teaching evaluation, online learning platform can accurately evaluate and analyze the teaching process, which can realize real-time teaching evaluation of students' learning status, including no one, many people, distraction and fatigue. Through relevant algorithms, the online learning platform can realize the assessment of students' head posture, which will give real-time warning of learning fatigue. Firstly, this paper analyzes the framework of online learning quality assessment. Then, this paper analyzes the face recognition and head pose recognition technology. Finally, some suggestions are put forward.