Ensembles of general regression neural networks for short-term electricity demand forecasting

Grzegorz Dudek
{"title":"Ensembles of general regression neural networks for short-term electricity demand forecasting","authors":"Grzegorz Dudek","doi":"10.1109/EPE.2017.7967256","DOIUrl":null,"url":null,"abstract":"This work presents ensembles of general regression neural network for short-term electricity demand forecasting. Several types of ensembles are proposed which differ in the source of diversity of individual members. Diversity is generated using different subsets of training data, different subsets of features, randomly disrupted training data and randomly disrupted model parameters. Experimental study on several datasets demonstrates that ensemble learning leads to decreasing in forecast errors comparing to the mean errors of the base learners.","PeriodicalId":201464,"journal":{"name":"2017 18th International Scientific Conference on Electric Power Engineering (EPE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Scientific Conference on Electric Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2017.7967256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work presents ensembles of general regression neural network for short-term electricity demand forecasting. Several types of ensembles are proposed which differ in the source of diversity of individual members. Diversity is generated using different subsets of training data, different subsets of features, randomly disrupted training data and randomly disrupted model parameters. Experimental study on several datasets demonstrates that ensemble learning leads to decreasing in forecast errors comparing to the mean errors of the base learners.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短期电力需求预测的广义回归神经网络集成
本文提出了用于短期电力需求预测的广义回归神经网络组合。提出了几种类型的合奏,这些合奏在个体成员多样性的来源上有所不同。多样性是由训练数据的不同子集、特征的不同子集、随机中断的训练数据和随机中断的模型参数产生的。在多个数据集上的实验研究表明,与基础学习器的平均误差相比,集成学习使预测误差减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of different concepts of traction drives with regard to high-speed PMSM Under frequency load shedding threats in island operation AC and DC response of heterojunction a-SiC/c-Si for PV application Features of controlled switching under normal and emergency operating conditions in medium voltage networks CFD-based evaluation of current-carrying capacity of power cables installed in free air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1