A new on-line algorithm for inverse kinematics of robot manipulators ensuring path tracking capability under joint limits

G. Antonelli, S. Chiaverini, G. Fusco
{"title":"A new on-line algorithm for inverse kinematics of robot manipulators ensuring path tracking capability under joint limits","authors":"G. Antonelli, S. Chiaverini, G. Fusco","doi":"10.1109/TRA.2002.807543","DOIUrl":null,"url":null,"abstract":"The presence of joint velocity and acceleration limits must be taken into account by the inverse kinematics of robot manipulators, so as to avoid incorrect task execution when these are violated. To solve this problem, a novel algorithmic approach to kinematic control is presented in this paper, which guarantees that the joint variables do not overtake their limits. The proposed technique is based on a new second-order inverse kinematics algorithm, which enables the handling of velocity and acceleration constraints while tracking the desired end-effector path. The goal is achieved by suitably slowing down the task-space trajectory via a time warp when joints limits are encountered. The proposed method is designed for online applications, i.e., the desired trajectory is not known in advance, and requires a light computational burden. The application of the proposed approach is finally illustrated in experiments implemented on a six-degree-of-freedom industrial robot manipulator.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2002.807543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

The presence of joint velocity and acceleration limits must be taken into account by the inverse kinematics of robot manipulators, so as to avoid incorrect task execution when these are violated. To solve this problem, a novel algorithmic approach to kinematic control is presented in this paper, which guarantees that the joint variables do not overtake their limits. The proposed technique is based on a new second-order inverse kinematics algorithm, which enables the handling of velocity and acceleration constraints while tracking the desired end-effector path. The goal is achieved by suitably slowing down the task-space trajectory via a time warp when joints limits are encountered. The proposed method is designed for online applications, i.e., the desired trajectory is not known in advance, and requires a light computational burden. The application of the proposed approach is finally illustrated in experiments implemented on a six-degree-of-freedom industrial robot manipulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种保证关节限制下路径跟踪能力的机器人逆运动学在线算法
机器人逆运动学必须考虑关节速度和加速度限制的存在,以避免在违反关节速度和加速度限制时执行错误的任务。为了解决这一问题,本文提出了一种新的运动控制算法,保证关节变量不超过极限。该技术基于一种新的二阶逆运动学算法,能够在跟踪期望的末端执行器路径的同时处理速度和加速度约束。当遇到关节限制时,通过时间扭曲适当地减慢任务空间轨迹,从而达到目标。所提出的方法是为在线应用而设计的,即期望的轨迹是事先未知的,并且需要轻的计算负担。最后在一个六自由度工业机器人上进行了实验,说明了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments in aligning threaded parts using a robot hand A miniature pan-tilt actuator: the spherical pointing motor A simple and analytical procedure for calibrating extrinsic camera parameters Consistency verification in modeling of real-time systems Data-mining approach to production control in the computer-integrated testing cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1