Forecasting COVID-19 Infections in Gulf Cooperation Council (GCC) Countries using Machine Learning

L. Ismail, Huned Materwala, Alain Hennebelle
{"title":"Forecasting COVID-19 Infections in Gulf Cooperation Council (GCC) Countries using Machine Learning","authors":"L. Ismail, Huned Materwala, Alain Hennebelle","doi":"10.1145/3474963.3475844","DOIUrl":null,"url":null,"abstract":"COVID-19 has infected more than 68 million people worldwide since it was first detected about a year ago. Machine learning time series models have been implemented to forecast COVID-19 infections. In this paper, we develop time series models for the Gulf Cooperation Council (GCC) countries using the public COVID-19 dataset from Johns Hopkins. The dataset set includes the one-year cumulative COVID-19 cases between 22/01/2020 to 22/01/2021. We developed different models for the countries under study based on the spatial distribution of the infection data. Our experimental results show that the developed models can forecast COVID-19 infections with high precision.","PeriodicalId":277800,"journal":{"name":"Proceedings of the 13th International Conference on Computer Modeling and Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474963.3475844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

COVID-19 has infected more than 68 million people worldwide since it was first detected about a year ago. Machine learning time series models have been implemented to forecast COVID-19 infections. In this paper, we develop time series models for the Gulf Cooperation Council (GCC) countries using the public COVID-19 dataset from Johns Hopkins. The dataset set includes the one-year cumulative COVID-19 cases between 22/01/2020 to 22/01/2021. We developed different models for the countries under study based on the spatial distribution of the infection data. Our experimental results show that the developed models can forecast COVID-19 infections with high precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习预测海湾合作委员会(GCC)国家COVID-19感染情况
自大约一年前首次发现COVID-19以来,全球已有超过6800万人感染。机器学习时间序列模型已被用于预测COVID-19感染。在本文中,我们使用约翰霍普金斯大学的公共COVID-19数据集开发了海湾合作委员会(GCC)国家的时间序列模型。该数据集包括2020年1月22日至2021年1月22日期间的一年累积COVID-19病例。我们根据感染数据的空间分布为所研究的国家开发了不同的模型。实验结果表明,所建立的模型具有较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Behavior of Multi-Conical Wet Clutch based on Combined Wear Law A Method for Evaluating the Importance of Regional Rail Transit Nodes under the Sense of Cascaded Failure Comprehensive Evaluation Method of Job Satisfaction Based on Improved Analytic Hierarchy Process Research on Federated Learning and Its Security Issues for Load Forecasting Design of an Axial Flux Permanent Magnet Synchronous Motor for a Pedestal Electric Fan Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1