A critical analysis of application-adaptive multiple clock processors

Emil Talpes, Diana Marculescu
{"title":"A critical analysis of application-adaptive multiple clock processors","authors":"Emil Talpes, Diana Marculescu","doi":"10.1145/871506.871576","DOIUrl":null,"url":null,"abstract":"Enabled by the continuous advancement in fabrication technology, present day synchronous microprocessors include more than 100 million transistors and have clock speeds well in excess of the 1GHz mark. Distributing a low-skew clock signal in this frequency range to all areas of a large chip is a task of growing complexity. As a solution to this problem, designers have recently suggested the use of frequency islands that are locally clocked and externally communicate using mixed timing communication schemes. Such a design style fits nicely the recently proposed concept of voltage islands that, in addition, can potentially enable fine grain dynamic power management. This paper proposes a design exploration framework for application-adaptive multiple clock processors which provides the means for analyzing and identifying the right inter-domain communication scheme and the proper granularity for the choice of voltage/frequency. In addition, the proposed design exploration framework allows for comparative analysis of newly proposed or existing application-driven dynamic power management strategies. Such a design exploration framework and accompanying results can help designers and computer architects in choosing the right design strategy for achieving better power-performance trade-offs in multiple clock high-end processors.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/871506.871576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Enabled by the continuous advancement in fabrication technology, present day synchronous microprocessors include more than 100 million transistors and have clock speeds well in excess of the 1GHz mark. Distributing a low-skew clock signal in this frequency range to all areas of a large chip is a task of growing complexity. As a solution to this problem, designers have recently suggested the use of frequency islands that are locally clocked and externally communicate using mixed timing communication schemes. Such a design style fits nicely the recently proposed concept of voltage islands that, in addition, can potentially enable fine grain dynamic power management. This paper proposes a design exploration framework for application-adaptive multiple clock processors which provides the means for analyzing and identifying the right inter-domain communication scheme and the proper granularity for the choice of voltage/frequency. In addition, the proposed design exploration framework allows for comparative analysis of newly proposed or existing application-driven dynamic power management strategies. Such a design exploration framework and accompanying results can help designers and computer architects in choosing the right design strategy for achieving better power-performance trade-offs in multiple clock high-end processors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用自适应多时钟处理器的关键分析
由于制造技术的不断进步,目前的同步微处理器包括超过1亿个晶体管,时钟速度远远超过1GHz。将这个频率范围内的低偏度时钟信号分布到大型芯片的所有区域是一项越来越复杂的任务。为了解决这个问题,设计师最近建议使用频率岛,即本地时钟和外部使用混合定时通信方案进行通信。这种设计风格非常适合最近提出的电压岛概念,此外,它还可以潜在地实现细粒度动态电源管理。本文提出了一种应用自适应多时钟处理器的设计探索框架,为分析和确定合适的域间通信方案和选择合适的电压/频率粒度提供了手段。此外,提出的设计探索框架允许对新提出的或现有的应用驱动的动态电源管理策略进行比较分析。这样的设计探索框架和相关结果可以帮助设计人员和计算机架构师选择正确的设计策略,以便在多时钟高端处理器中实现更好的功耗性能权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage scheduling under unpredictabilities: a risk management paradigm [logic design] Uncertainty-based scheduling: energy-efficient ordering for tasks with variable execution time [processor scheduling] Level conversion for dual-supply systems [low power logic IC design] A selective filter-bank TLB system [embedded processor MMU for low power] A semi-custom voltage-island technique and its application to high-speed serial links [CMOS active power reduction]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1