Towards Automatic Stereoscopic Video Synthesis from a Casual Monocular Video

Lin Zhong, Sen Wang, Minwoo Park, Rodney L. Miller, Dimitris N. Metaxas
{"title":"Towards Automatic Stereoscopic Video Synthesis from a Casual Monocular Video","authors":"Lin Zhong, Sen Wang, Minwoo Park, Rodney L. Miller, Dimitris N. Metaxas","doi":"10.1109/ISM.2012.64","DOIUrl":null,"url":null,"abstract":"Automatically synthesizing 3D content from a causal monocular video has become an important problem. Previous works either use no geometry information, or rely on precise 3D geometry information. Therefore, they cannot obtain reasonable results if the 3D structure in the scene is complex, or noisy 3D geometry information is estimated from monocular videos. In this paper, we present an automatic and robust framework to synthesize stereoscopic videos from casual 2D monocular videos. First, 3D geometry information (e.g., camera parameters, depth map) are extracted from the 2D input video. Then a Bayesian-based View Synthesis (BVS) approach is proposed to render high-quality new virtual views for stereoscopic video to deal with noisy 3D geometry information. Extensive experiments on various videos demonstrate that BVS can synthesize more accurate views than other methods, and our proposed framework also be able to generate high-quality 3D videos.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"45 18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatically synthesizing 3D content from a causal monocular video has become an important problem. Previous works either use no geometry information, or rely on precise 3D geometry information. Therefore, they cannot obtain reasonable results if the 3D structure in the scene is complex, or noisy 3D geometry information is estimated from monocular videos. In this paper, we present an automatic and robust framework to synthesize stereoscopic videos from casual 2D monocular videos. First, 3D geometry information (e.g., camera parameters, depth map) are extracted from the 2D input video. Then a Bayesian-based View Synthesis (BVS) approach is proposed to render high-quality new virtual views for stereoscopic video to deal with noisy 3D geometry information. Extensive experiments on various videos demonstrate that BVS can synthesize more accurate views than other methods, and our proposed framework also be able to generate high-quality 3D videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从偶然的单目视频实现自动立体视频合成
从任意的单目视频中自动合成3D内容已经成为一个重要的问题。以前的作品要么不使用几何信息,要么依赖于精确的三维几何信息。因此,如果场景中的三维结构比较复杂,或者从单目视频中估计有噪声的三维几何信息,则无法得到合理的结果。在本文中,我们提出了一个自动的、鲁棒的框架来从随意的2D单目视频合成立体视频。首先,从二维输入视频中提取三维几何信息(如摄像机参数、深度图)。然后提出了一种基于贝叶斯的视图合成(BVS)方法,为立体视频呈现高质量的新虚拟视图,以处理有噪声的三维几何信息。在各种视频上的大量实验表明,BVS可以比其他方法合成更精确的视图,并且我们提出的框架也可以生成高质量的3D视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1