A new upper bound on the capacity of a class of primitive relay channels

R. Tandon, S. Ulukus
{"title":"A new upper bound on the capacity of a class of primitive relay channels","authors":"R. Tandon, S. Ulukus","doi":"10.1109/ALLERTON.2008.4797748","DOIUrl":null,"url":null,"abstract":"We obtain a new upper bound on the capacity of a class of discrete memoryless relay channels. For this class of relay channels, the relay observes an i.i.d. sequence T, which is independent of the channel input X. The channel is described by a set of probability transition functions p(y|x, t) for all (x, t, y) isin X times T times Y. Furthermore, a noiseless link of finite capacity R0 exists from the relay to the receiver. Although the capacity for these channels is not known in general, the capacity of a subclass of these channels, namely when T = g(X, Y ), for some deterministic function g, was obtained in Kim (2008) and it was shown to be equal to the cut-set bound. Another instance where the capacity was obtained was in Aleksic et al. (2007), where the channel output Y can be written as Y = X oplus Z, where oplus denotes modulo-m addition, Z is independent of X, |X| = |Y| = m, and T is some stochastic function of Z. The compress-and-forward (CAF) achievability scheme (Cover and Gamal, 1979) was shown to be capacity achieving in both cases. Using our upper bound we recover the capacity results of Kim, and Aleksic et al. We also obtain the capacity of a class of channels which does not fall into either of the classes studied in Kim, and Aleksic et al. For this class of channels, CAF scheme is shown to be optimal but capacity is strictly less than the cut-set bound for certain values of R0. We further illustrate the usefulness of our bound by evaluating it for a particular relay channel with binary multiplicative states and binary additive noise for which the channel is given as Y = TX +N. We show that our upper bound is strictly better than the cut-set upper bound for certain values of R0 but it lies strictly above the rates yielded by the CAF achievability scheme.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We obtain a new upper bound on the capacity of a class of discrete memoryless relay channels. For this class of relay channels, the relay observes an i.i.d. sequence T, which is independent of the channel input X. The channel is described by a set of probability transition functions p(y|x, t) for all (x, t, y) isin X times T times Y. Furthermore, a noiseless link of finite capacity R0 exists from the relay to the receiver. Although the capacity for these channels is not known in general, the capacity of a subclass of these channels, namely when T = g(X, Y ), for some deterministic function g, was obtained in Kim (2008) and it was shown to be equal to the cut-set bound. Another instance where the capacity was obtained was in Aleksic et al. (2007), where the channel output Y can be written as Y = X oplus Z, where oplus denotes modulo-m addition, Z is independent of X, |X| = |Y| = m, and T is some stochastic function of Z. The compress-and-forward (CAF) achievability scheme (Cover and Gamal, 1979) was shown to be capacity achieving in both cases. Using our upper bound we recover the capacity results of Kim, and Aleksic et al. We also obtain the capacity of a class of channels which does not fall into either of the classes studied in Kim, and Aleksic et al. For this class of channels, CAF scheme is shown to be optimal but capacity is strictly less than the cut-set bound for certain values of R0. We further illustrate the usefulness of our bound by evaluating it for a particular relay channel with binary multiplicative states and binary additive noise for which the channel is given as Y = TX +N. We show that our upper bound is strictly better than the cut-set upper bound for certain values of R0 but it lies strictly above the rates yielded by the CAF achievability scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类原始中继信道容量的新上界
得到了一类离散无记忆中继信道容量的一个新的上界。对于这类中继信道,中继观察到一个独立于信道输入x的iid序列T,对于x乘以T乘以y中的所有(x, T, y),信道用一组概率转移函数p(y|x, T)来描述,并且从中继到接收端存在一个有限容量R0的无噪声链路。虽然这些通道的容量通常是未知的,但在Kim(2008)中获得了这些通道的一个子类的容量,即当T = g(X, Y)时,对于某些确定性函数g,它被证明等于切集界。另一个获得容量的例子是Aleksic et al.(2007),其中通道输出Y可以写成Y = X oplus Z,其中oplus表示模m加法,Z与X无关,|X| = |Y| = m, T是Z的某个随机函数。压缩转发(CAF)可达性方案(Cover and Gamal, 1979)被证明在两种情况下都能实现容量。利用我们的上界,我们恢复了Kim和Aleksic等人的容量结果。我们还获得了一类通道的容量,它不属于Kim和Aleksic等人研究的任何一类。对于这类信道,证明了CAF方案是最优的,但对于某些R0值,容量严格小于切集界。我们通过对具有二进制乘性状态和二进制加性噪声的特定中继信道(其中信道给定为Y = TX +N)进行评估来进一步说明我们的界的有用性。我们证明,对于某些R0值,我们的上界严格优于切集上界,但它严格高于CAF可实现方案产生的率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning sparse doubly-selective channels Ergodic two-user interference channels: Is separability optimal? Weight distribution of codes on hypergraphs Compound multiple access channels with conferencing decoders Transmission techniques for relay-interference networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1