Power Allocation Method of Downlink Non-orthogonal Multiple Access System Based on α Fair Utility Function

Jianpo Li, Qiwei Wang
{"title":"Power Allocation Method of Downlink Non-orthogonal Multiple Access System Based on α Fair Utility Function","authors":"Jianpo Li, Qiwei Wang","doi":"10.3745/JIPS.03.0157","DOIUrl":null,"url":null,"abstract":"The unbalance between system ergodic sum rate and high fairness is one of the key issues affecting the performance of non-orthogonal multiple access (NOMA) system. To solve the problem, this paper proposes a power allocation algorithm to realize the ergodic sum rate maximization of NOMA system. The scheme is mainly achieved by the construction algorithm of fair model based on α fair utility function and the optimal solution algorithm based on the interior point method of penalty function. Aiming at the construction of fair model, the fair target is added to the traditional power allocation model to set the reasonable target function. Simultaneously, the problem of ergodic sum rate and fairness in power allocation is weighed by adjusting the value of α. Aiming at the optimal solution algorithm, the interior point method of penalty function is used to transform the fair objective function with unequal constraints into the unconstrained problem in the feasible domain. Then the optimal solution of the original constrained optimization problem is gradually approximated within the feasible domain. The simulation results show that, compared with NOMA and time division multiple address (TDMA) schemes, the proposed method has larger ergodic sum rate and lower Fairness Index (FI) values.","PeriodicalId":415161,"journal":{"name":"J. Inf. Process. Syst.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Process. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.03.0157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The unbalance between system ergodic sum rate and high fairness is one of the key issues affecting the performance of non-orthogonal multiple access (NOMA) system. To solve the problem, this paper proposes a power allocation algorithm to realize the ergodic sum rate maximization of NOMA system. The scheme is mainly achieved by the construction algorithm of fair model based on α fair utility function and the optimal solution algorithm based on the interior point method of penalty function. Aiming at the construction of fair model, the fair target is added to the traditional power allocation model to set the reasonable target function. Simultaneously, the problem of ergodic sum rate and fairness in power allocation is weighed by adjusting the value of α. Aiming at the optimal solution algorithm, the interior point method of penalty function is used to transform the fair objective function with unequal constraints into the unconstrained problem in the feasible domain. Then the optimal solution of the original constrained optimization problem is gradually approximated within the feasible domain. The simulation results show that, compared with NOMA and time division multiple address (TDMA) schemes, the proposed method has larger ergodic sum rate and lower Fairness Index (FI) values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于α公平效用函数的下行非正交多址系统功率分配方法
系统遍历和率与高公平性之间的不平衡是影响非正交多址(NOMA)系统性能的关键问题之一。为了解决这一问题,本文提出了一种功率分配算法来实现NOMA系统的遍历和速率最大化。该方案主要通过基于α公平效用函数的公平模型构建算法和基于罚函数内点法的最优解算法来实现。针对公平模型的构建,在传统的权力分配模型中加入公平目标,设定合理的目标函数。同时,通过调整α值来权衡遍历和率和权力分配的公平性问题。针对问题的最优解算法,采用罚函数内点法将约束条件不等的公平目标函数转化为可行域内的无约束问题。然后在可行域内逐步逼近原约束优化问题的最优解。仿真结果表明,与NOMA和时分多址(TDMA)方案相比,该方法具有更高的遍历和速率和更低的公平指数(FI)值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization Reference Architecture and Operation Model for PPP (Public-Private-Partnership) Cloud RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream Personalized Product Recommendation Method for Analyzing User Behavior Using DeepFM A Special Section on Deep & Advanced Machine Learning Approaches for Human Behavior Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1