A prototype application for real-time recognition and disambiguation of clinical abbreviations

Yonghui Wu, J. Denny, S. Rosenbloom, R. Miller, D. Giuse, Min Song, Hua Xu
{"title":"A prototype application for real-time recognition and disambiguation of clinical abbreviations","authors":"Yonghui Wu, J. Denny, S. Rosenbloom, R. Miller, D. Giuse, Min Song, Hua Xu","doi":"10.1145/2512089.2512096","DOIUrl":null,"url":null,"abstract":"To save time, healthcare providers frequently use abbreviations while authoring clinical documents. Nevertheless, abbreviations that authors deem unambiguous often confuse other readers, including clinicians, patients, and natural language processing (NLP) systems. Most current clinical NLP systems \"post-process\" notes long after clinicians enter them into electronic health record systems (EHRs). Such post-processing cannot guarantee 100% accuracy in abbreviation identification and disambiguation, since multiple alternative interpretations exist. In this paper, authors describe a prototype system for real-time Clinical Abbreviation Recognition and Disambiguation (CARD) -- i.e., a system that interacts with authors during note generation to verify correct abbreviation senses. The CARD system design anticipates future integration with web-based clinical documentation systems to improve quality of healthcare records. The prototype application embodies three word sense disambiguation (WSD) methods. We evaluated the accuracy and response times of the prototype CARD system in a simulated study. Using an existing test data set of 25 commonly observed, highly ambiguous clinical abbreviations the evaluation demonstrated that the best WSD method had an accuracy of 88.8%, and a reasonable average response time of 1.6 milliseconds per each abbreviation. The study indicates potential feasibility of real-time NLP-enabled abbreviation disambiguation within clinical documentation systems.","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2512089.2512096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

To save time, healthcare providers frequently use abbreviations while authoring clinical documents. Nevertheless, abbreviations that authors deem unambiguous often confuse other readers, including clinicians, patients, and natural language processing (NLP) systems. Most current clinical NLP systems "post-process" notes long after clinicians enter them into electronic health record systems (EHRs). Such post-processing cannot guarantee 100% accuracy in abbreviation identification and disambiguation, since multiple alternative interpretations exist. In this paper, authors describe a prototype system for real-time Clinical Abbreviation Recognition and Disambiguation (CARD) -- i.e., a system that interacts with authors during note generation to verify correct abbreviation senses. The CARD system design anticipates future integration with web-based clinical documentation systems to improve quality of healthcare records. The prototype application embodies three word sense disambiguation (WSD) methods. We evaluated the accuracy and response times of the prototype CARD system in a simulated study. Using an existing test data set of 25 commonly observed, highly ambiguous clinical abbreviations the evaluation demonstrated that the best WSD method had an accuracy of 88.8%, and a reasonable average response time of 1.6 milliseconds per each abbreviation. The study indicates potential feasibility of real-time NLP-enabled abbreviation disambiguation within clinical documentation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
临床缩略语的实时识别和消歧的原型应用
为了节省时间,医疗保健提供者在编写临床文档时经常使用缩写。然而,作者认为没有歧义的缩写常常使其他读者感到困惑,包括临床医生、患者和自然语言处理(NLP)系统。大多数目前的临床NLP系统在临床医生将记录输入电子健康记录系统(EHRs)后很长时间才进行“后处理”。这种后处理不能保证缩略词识别和消歧的100%准确性,因为存在多种替代解释。在本文中,作者描述了一个用于实时临床缩写识别和消歧(CARD)的原型系统,即一个在注释生成过程中与作者交互以验证正确缩写感觉的系统。CARD系统设计预计未来将与基于web的临床文档系统集成,以提高医疗记录的质量。原型应用程序体现了三种词义消歧方法。我们在模拟研究中评估了原型CARD系统的准确性和响应时间。使用现有的25个常见的、高度模糊的临床缩略语的测试数据集,评估表明,最佳WSD方法的准确率为88.8%,每个缩略语的合理平均响应时间为1.6毫秒。该研究表明,潜在的可行性实时nlp启用缩写消歧在临床文件系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction of Multi-level Networks Incorporating Molecule, Cell, Organ and Phenotype Properties for Drug-induced Phenotype Prediction Integrative Database for Exploring Compound Combinations of Natural Products for Medical Effects TILD: A Strategy to Identify Cancer-related Genes Using Title Information in Literature Data An Exploration of the Collaborative Networks for Clinical and Academic Domains in AIDS Research: A Spatial Scientometric Approach Identification of a Specific Base Sequence of Pathogenic E. Coli through a Genomic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1