Shape-Adaptive Kernel Network for Dense Object Detection

H. Kim, Sunghun Joung, Ig-Jae Kim, K. Sohn
{"title":"Shape-Adaptive Kernel Network for Dense Object Detection","authors":"H. Kim, Sunghun Joung, Ig-Jae Kim, K. Sohn","doi":"10.1109/ICIP40778.2020.9190767","DOIUrl":null,"url":null,"abstract":"Dense object detectors that are applied over a regular, dense grid have advanced and drawn their attention in recent days. Their fully convolutional nature greatly advances the computational efficiency of object detectors compared to the two-stage detectors. However, the lack of the ability to adjust shape variation on a regular grid is still limited. In this paper we introduce a new framework, shape-adaptive kernel network, to handle spatial manipulation of input data in convolutional kernel space. At the heart of out approach is to align the original kernel space recovering shape variation of each input feature on regular grid. To this end, we propose a shape-adaptive kernel sampler to adjust dynamic convolutional kernel conditioned on input. To increase the flexibility of geometric transformation, a cascade refinement module is designed, which first estimates the global transformation grid and then estimates local offset in convolutional kernel space. Our experiments demonstrate the effectiveness of the shape-adaptive kernel network for dense object detection on various benchmarks.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dense object detectors that are applied over a regular, dense grid have advanced and drawn their attention in recent days. Their fully convolutional nature greatly advances the computational efficiency of object detectors compared to the two-stage detectors. However, the lack of the ability to adjust shape variation on a regular grid is still limited. In this paper we introduce a new framework, shape-adaptive kernel network, to handle spatial manipulation of input data in convolutional kernel space. At the heart of out approach is to align the original kernel space recovering shape variation of each input feature on regular grid. To this end, we propose a shape-adaptive kernel sampler to adjust dynamic convolutional kernel conditioned on input. To increase the flexibility of geometric transformation, a cascade refinement module is designed, which first estimates the global transformation grid and then estimates local offset in convolutional kernel space. Our experiments demonstrate the effectiveness of the shape-adaptive kernel network for dense object detection on various benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于密集目标检测的形状自适应核网络
最近几天,应用于规则密集网格的密集物体探测器取得了进展,并引起了人们的注意。与两级检测器相比,它们的全卷积特性大大提高了目标检测器的计算效率。然而,缺乏在规则网格上调整形状变化的能力仍然是有限的。本文引入了一种新的框架——形状自适应核网络来处理卷积核空间中输入数据的空间处理。该方法的核心是在规则网格上对齐原始核空间,恢复每个输入特征的形状变化。为此,我们提出了一种形状自适应核采样器来调整以输入为条件的动态卷积核。为了提高几何变换的灵活性,设计了级联细化模块,该模块首先估计全局变换网格,然后在卷积核空间中估计局部偏移量。我们的实验证明了形状自适应核网络在密集目标检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1