{"title":"A predictive system integrating intrinsic mode functions, artificial neural networks, and genetic algorithms for forecasting S&P500 intra-day data","authors":"Salim Lahmiri","doi":"10.1002/isaf.1470","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>There is an abundant literature on the design of intelligent systems to forecast stock market indices. In general, the existing stock market price forecasting approaches can achieve good results. The goal of our study is to develop an effective intelligent predictive system to improve the forecasting accuracy. Therefore, our proposed predictive system integrates adaptive filtering, artificial neural networks (ANNs), and evolutionary optimization. Specifically, it is based on the empirical mode decomposition (EMD), which is a useful adaptive signal-processing technique, and ANNs, which are powerful adaptive intelligent systems suitable for noisy data learning and prediction, such as stock market intra-day data. Our system hybridizes intrinsic mode functions (IMFs) obtained from EMD and ANNs optimized by genetic algorithms (GAs) for the analysis and forecasting of S&P500 intra-day price data. For comparison purposes, the performance of the EMD-GA-ANN presented is compared with that of a GA-ANN trained with a wavelet transform's (WT's) resulting approximation and details coefficients, and a GA-general regression neural network (GRNN) trained with price historical data. The mean absolute deviation, mean absolute error, and root-mean-squared errors show evidence of the superiority of EMD-GA-ANN over WT-GA-ANN and GA-GRNN. In addition, it outperformed existing predictive systems tested on the same data set. Furthermore, our hybrid predictive system is relatively easy to implement and not highly time-consuming to run. Furthermore, it was found that the Daubechies wavelet showed quite a higher prediction accuracy than the Haar wavelet. Moreover, prediction errors decrease with the level of decomposition.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"27 2","pages":"55-65"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1470","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 8
Abstract
There is an abundant literature on the design of intelligent systems to forecast stock market indices. In general, the existing stock market price forecasting approaches can achieve good results. The goal of our study is to develop an effective intelligent predictive system to improve the forecasting accuracy. Therefore, our proposed predictive system integrates adaptive filtering, artificial neural networks (ANNs), and evolutionary optimization. Specifically, it is based on the empirical mode decomposition (EMD), which is a useful adaptive signal-processing technique, and ANNs, which are powerful adaptive intelligent systems suitable for noisy data learning and prediction, such as stock market intra-day data. Our system hybridizes intrinsic mode functions (IMFs) obtained from EMD and ANNs optimized by genetic algorithms (GAs) for the analysis and forecasting of S&P500 intra-day price data. For comparison purposes, the performance of the EMD-GA-ANN presented is compared with that of a GA-ANN trained with a wavelet transform's (WT's) resulting approximation and details coefficients, and a GA-general regression neural network (GRNN) trained with price historical data. The mean absolute deviation, mean absolute error, and root-mean-squared errors show evidence of the superiority of EMD-GA-ANN over WT-GA-ANN and GA-GRNN. In addition, it outperformed existing predictive systems tested on the same data set. Furthermore, our hybrid predictive system is relatively easy to implement and not highly time-consuming to run. Furthermore, it was found that the Daubechies wavelet showed quite a higher prediction accuracy than the Haar wavelet. Moreover, prediction errors decrease with the level of decomposition.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.