{"title":"Writer adaptation techniques in off-line cursive word recognition","authors":"A. Vinciarelli, Samy Bengio","doi":"10.1109/IWFHR.2002.1030924","DOIUrl":null,"url":null,"abstract":"This work presents the application of HMM adaptation techniques to the problem of off-line cursive script recognition. Instead of training a new model for each writer one first creates a unique model with a mixed database and then adapts it for each different writer using his own small dataset. Experiments on a publicly available benchmark database show that an adapted system has an accuracy higher than 80% even when less than 30 word samples are used during adaptation, while a system trained using the data of the single writer only needs at least 200 words (the estimate is a lower bound) in order to achieve the same performance as the adapted models.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This work presents the application of HMM adaptation techniques to the problem of off-line cursive script recognition. Instead of training a new model for each writer one first creates a unique model with a mixed database and then adapts it for each different writer using his own small dataset. Experiments on a publicly available benchmark database show that an adapted system has an accuracy higher than 80% even when less than 30 word samples are used during adaptation, while a system trained using the data of the single writer only needs at least 200 words (the estimate is a lower bound) in order to achieve the same performance as the adapted models.