Combination Strategies for 2D Features to Recognize 3D Gestures

O. Aran
{"title":"Combination Strategies for 2D Features to Recognize 3D Gestures","authors":"O. Aran","doi":"10.1109/SIU.2006.1659820","DOIUrl":null,"url":null,"abstract":"In this study, using a two camera setup, we designed a system that recognizes 3D gestures. When 3D reconstruction is not possible or infeasible, combining 2D hand trajectories at feature or decision level increases the system performance drastically. The trajectories are extracted by tracking the center-of-mass of the hand and the width, height and orientation of the enclosing ellipse. Trajectories are then smoothed using a Kalman filter. Following the translation and scale normalization, the trajectories are modelled using hidden Markov models (HMM) and using support vector machines (SVM) by converting the trajectories to fixed length using re-sampling. Trajectories extracted from different cameras are combined at different levels and the effect to the system performance is observed. The best result is obtained by modelling the trajectories using HMMs and combining at decision level, with %1 error in 210 test examples","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, using a two camera setup, we designed a system that recognizes 3D gestures. When 3D reconstruction is not possible or infeasible, combining 2D hand trajectories at feature or decision level increases the system performance drastically. The trajectories are extracted by tracking the center-of-mass of the hand and the width, height and orientation of the enclosing ellipse. Trajectories are then smoothed using a Kalman filter. Following the translation and scale normalization, the trajectories are modelled using hidden Markov models (HMM) and using support vector machines (SVM) by converting the trajectories to fixed length using re-sampling. Trajectories extracted from different cameras are combined at different levels and the effect to the system performance is observed. The best result is obtained by modelling the trajectories using HMMs and combining at decision level, with %1 error in 210 test examples
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维特征组合策略识别三维手势
在这项研究中,我们使用双摄像头设置,设计了一个识别3D手势的系统。当三维重建不可能或不可行时,在特征或决策层面结合二维手轨迹可以显著提高系统性能。通过跟踪手的质心和外围椭圆的宽度、高度和方向来提取轨迹。然后使用卡尔曼滤波器平滑轨迹。在平移和尺度归一化之后,使用隐马尔可夫模型(HMM)和支持向量机(SVM)对轨迹进行建模,通过重采样将轨迹转换为固定长度。从不同摄像机提取的轨迹在不同层次上进行组合,观察对系统性能的影响。利用hmm模型对轨迹进行建模,并在决策层面进行组合,得到了最佳结果,210个测试样例的误差为%1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peer-to-Peer Multipoint Video Conferencing Using Layered Video Determination of Product Surface Quality Watermarking Tools for Turkish Texts By Using Darlington Topology Improvement of In-Band Gain for the Log Domain Filters Dual Wideband Antenna Analysis for Linear FMCW Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1