Spatial Locality Based Identifier Name Recommendation

Setegn Asnakew Kasegn, S. Abebe
{"title":"Spatial Locality Based Identifier Name Recommendation","authors":"Setegn Asnakew Kasegn, S. Abebe","doi":"10.1109/ict4da53266.2021.9672214","DOIUrl":null,"url":null,"abstract":"Identifier names are used to represent concepts in the source code. Concise and consistent identifier names are crucial to program comprehension. Identifier names reduce the effort to understand the software, support software maintenance and improve source code quality. Despite these benefits, many software systems are known to have meaningless and inconsistent identifier names. One of the reasons that lead to inconsistent identifier names is lack of knowledge of identifier names already used to represent concepts in the software. To address this problem, this study proposes a new approach to automatically suggest part of identifier name. The approach aims to use spatial locality to identify and suggest next terms given identifier name prefix. Spatial locality, in this context, refers to the use of terms in close proximity of documents related to the software system. The performance of our proposed approach is evaluated using six open source software systems. The evaluation result shows that the spatial locality based approach suggests part of identifier names correctly with an average precision of 83.2% and average mean reciprocal rank (MRR) of 25.5%. Of the top four correct suggestions, more than half are ranked in the first and second place.","PeriodicalId":371663,"journal":{"name":"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ict4da53266.2021.9672214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Identifier names are used to represent concepts in the source code. Concise and consistent identifier names are crucial to program comprehension. Identifier names reduce the effort to understand the software, support software maintenance and improve source code quality. Despite these benefits, many software systems are known to have meaningless and inconsistent identifier names. One of the reasons that lead to inconsistent identifier names is lack of knowledge of identifier names already used to represent concepts in the software. To address this problem, this study proposes a new approach to automatically suggest part of identifier name. The approach aims to use spatial locality to identify and suggest next terms given identifier name prefix. Spatial locality, in this context, refers to the use of terms in close proximity of documents related to the software system. The performance of our proposed approach is evaluated using six open source software systems. The evaluation result shows that the spatial locality based approach suggests part of identifier names correctly with an average precision of 83.2% and average mean reciprocal rank (MRR) of 25.5%. Of the top four correct suggestions, more than half are ranked in the first and second place.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间位置的标识符名称推荐
标识符名称用于表示源代码中的概念。简洁一致的标识符名称对于程序理解是至关重要的。标识符名称减少了理解软件、支持软件维护和提高源代码质量的工作量。尽管有这些好处,但许多软件系统都有无意义且不一致的标识符名称。导致标识符名称不一致的原因之一是缺乏对已用于表示软件中概念的标识符名称的了解。为了解决这一问题,本研究提出了一种自动提出部分标识符名称的新方法。该方法的目的是利用空间局部性来识别和建议给定标识符名称前缀的下一个术语。在这种情况下,空间局部性指的是在与软件系统相关的文档非常接近的地方使用术语。我们提出的方法的性能使用六个开源软件系统进行了评估。评价结果表明,基于空间局部性的识别方法能够正确识别部分标识符名称,平均准确率为83.2%,平均MRR为25.5%。在前四个正确的建议中,超过一半的建议排在第一和第二名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HSSIW: Hybrid Squirrel Search and Invasive Weed Based Cost-Makespan Task Scheduling for Fog-Cloud Environment Past Event Recall Test for Mitigating Session Hijacking and Cross-Site Request Forgery Classifying Severity Level of Psychiatric Symptoms on Twitter Data Investigate Risk Factors and Predict Neonatal and Infant Mortality Based on Maternal Determinants using Homogenous Ensemble Methods BackIP: Mutation Based Test Data Generation Using Hybrid Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1