Computing iconic summaries of general visual concepts

R. Raguram, S. Lazebnik
{"title":"Computing iconic summaries of general visual concepts","authors":"R. Raguram, S. Lazebnik","doi":"10.1109/CVPRW.2008.4562959","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of selecting iconic images to summarize general visual categories. We define iconic images as high-quality representatives of a large group of images consistent both in appearance and semantics. To find such groups, we perform joint clustering in the space of global image descriptors and latent topic vectors of tags associated with the images. To select the representative iconic images for the joint clusters, we use a quality ranking learned from a large collection of labeled images. For the purposes of visualization, iconic images are grouped by semantic ldquothemerdquo and multidimensional scaling is used to compute a 2D layout that reflects the relationships between the themes. Results on four large-scale datasets demonstrate the ability of our approach to discover plausible themes and recurring visual motifs for challenging abstract concepts such as ldquoloverdquo and ldquobeautyrdquo.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4562959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

This paper considers the problem of selecting iconic images to summarize general visual categories. We define iconic images as high-quality representatives of a large group of images consistent both in appearance and semantics. To find such groups, we perform joint clustering in the space of global image descriptors and latent topic vectors of tags associated with the images. To select the representative iconic images for the joint clusters, we use a quality ranking learned from a large collection of labeled images. For the purposes of visualization, iconic images are grouped by semantic ldquothemerdquo and multidimensional scaling is used to compute a 2D layout that reflects the relationships between the themes. Results on four large-scale datasets demonstrate the ability of our approach to discover plausible themes and recurring visual motifs for challenging abstract concepts such as ldquoloverdquo and ldquobeautyrdquo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算一般视觉概念的图标摘要
本文考虑了选取标志性图像来总结一般视觉类别的问题。我们将标志性图像定义为在外观和语义上一致的一大组图像的高质量代表。为了找到这样的组,我们在全局图像描述符和与图像相关的标签的潜在主题向量的空间中进行联合聚类。为了为联合聚类选择代表性的标志性图像,我们使用了从大量标记图像中学习到的质量排名。为了可视化的目的,图标图像按语义分组,并使用多维缩放来计算反映主题之间关系的2D布局。在四个大规模数据集上的结果表明,我们的方法能够为挑战抽象概念(如ldquoloverdquo和ldquobeautydquo)发现合理的主题和反复出现的视觉主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-fiber reconstruction from DW-MRI using a continuous mixture of von Mises-Fisher distributions New insights into the calibration of ToF-sensors Circular generalized cylinder fitting for 3D reconstruction in endoscopic imaging based on MRF A GPU-based implementation of motion detection from a moving platform Face model fitting based on machine learning from multi-band images of facial components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1