Endomicroscopic image retrieval and classification using invariant visual features

Barbara André, Tom Kamiel Magda Vercauteren, A. Perchant, A. Buchner, M. Wallace, N. Ayache
{"title":"Endomicroscopic image retrieval and classification using invariant visual features","authors":"Barbara André, Tom Kamiel Magda Vercauteren, A. Perchant, A. Buchner, M. Wallace, N. Ayache","doi":"10.1109/ISBI.2009.5193055","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of modern content based image retrieval methods to classify endomicroscopic images into two categories: neoplastic (pathological) and benign. We describe first the method that maps an image into a visual feature signature which is a numerical vector invariant with respect to some particular classes of geometric and intensity transformations. Then we explain how these signatures are used to retrieve from a database the k closest images to a new image. The classification is finally achieved through a procedure of votes weighted by a proximity criterion (weighted k-nearest neighbors). Compared with several previously published alternatives whose maximal accuracy rate is almost 67% on the database, our approach yields an accuracy of 80% and offers promising perspectives.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper investigates the use of modern content based image retrieval methods to classify endomicroscopic images into two categories: neoplastic (pathological) and benign. We describe first the method that maps an image into a visual feature signature which is a numerical vector invariant with respect to some particular classes of geometric and intensity transformations. Then we explain how these signatures are used to retrieve from a database the k closest images to a new image. The classification is finally achieved through a procedure of votes weighted by a proximity criterion (weighted k-nearest neighbors). Compared with several previously published alternatives whose maximal accuracy rate is almost 67% on the database, our approach yields an accuracy of 80% and offers promising perspectives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不变视觉特征的内镜图像检索与分类
本文研究了使用现代基于内容的图像检索方法将内镜图像分为两类:肿瘤(病理)和良性。我们首先描述了将图像映射到视觉特征签名的方法,该特征签名是相对于某些特定类别的几何和强度变换的数值向量不变量。然后,我们解释如何使用这些签名从数据库中检索与新图像最接近的k个图像。分类最终通过一个由邻近标准(加权k近邻)加权的投票过程来实现。与之前发表的几种替代方法相比,它们在数据库上的最大准确率接近67%,我们的方法产生了80%的准确率,并提供了很有希望的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1