Barbara André, Tom Kamiel Magda Vercauteren, A. Perchant, A. Buchner, M. Wallace, N. Ayache
{"title":"Endomicroscopic image retrieval and classification using invariant visual features","authors":"Barbara André, Tom Kamiel Magda Vercauteren, A. Perchant, A. Buchner, M. Wallace, N. Ayache","doi":"10.1109/ISBI.2009.5193055","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of modern content based image retrieval methods to classify endomicroscopic images into two categories: neoplastic (pathological) and benign. We describe first the method that maps an image into a visual feature signature which is a numerical vector invariant with respect to some particular classes of geometric and intensity transformations. Then we explain how these signatures are used to retrieve from a database the k closest images to a new image. The classification is finally achieved through a procedure of votes weighted by a proximity criterion (weighted k-nearest neighbors). Compared with several previously published alternatives whose maximal accuracy rate is almost 67% on the database, our approach yields an accuracy of 80% and offers promising perspectives.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This paper investigates the use of modern content based image retrieval methods to classify endomicroscopic images into two categories: neoplastic (pathological) and benign. We describe first the method that maps an image into a visual feature signature which is a numerical vector invariant with respect to some particular classes of geometric and intensity transformations. Then we explain how these signatures are used to retrieve from a database the k closest images to a new image. The classification is finally achieved through a procedure of votes weighted by a proximity criterion (weighted k-nearest neighbors). Compared with several previously published alternatives whose maximal accuracy rate is almost 67% on the database, our approach yields an accuracy of 80% and offers promising perspectives.