Alarm reduction and correlation in defence of IP networks

Tobias Chyssler, S. Nadjm-Tehrani, S. Burschka, K. Burbeck
{"title":"Alarm reduction and correlation in defence of IP networks","authors":"Tobias Chyssler, S. Nadjm-Tehrani, S. Burschka, K. Burbeck","doi":"10.1109/ENABL.2004.7","DOIUrl":null,"url":null,"abstract":"Society's critical infrastructures are increasingly dependent on IP networks. Intrusion detection and tolerance within data networks is therefore imperative for dependability in other domains such as telecommunications and future energy management networks. Today's data networks are protected by human operators who are overwhelmed by the massive information overload through false alarm rates of the protection mechanisms. This paper studies the role of alarm reduction and correlation in supporting the security administrator in an enterprise network. We present an architecture that incorporates intrusion detection systems as sensors, and provides improved alarm data to the human operator or to automated actuators. Alarm reduction and correlation via static and adaptive filtering, normalisation, and aggregation is demonstrated on the output from three sensors (Snort, Samhain and Syslog) used in a telecom test network.","PeriodicalId":391459,"journal":{"name":"13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENABL.2004.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Society's critical infrastructures are increasingly dependent on IP networks. Intrusion detection and tolerance within data networks is therefore imperative for dependability in other domains such as telecommunications and future energy management networks. Today's data networks are protected by human operators who are overwhelmed by the massive information overload through false alarm rates of the protection mechanisms. This paper studies the role of alarm reduction and correlation in supporting the security administrator in an enterprise network. We present an architecture that incorporates intrusion detection systems as sensors, and provides improved alarm data to the human operator or to automated actuators. Alarm reduction and correlation via static and adaptive filtering, normalisation, and aggregation is demonstrated on the output from three sensors (Snort, Samhain and Syslog) used in a telecom test network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IP网络防御中的降噪与关联
社会的关键基础设施越来越依赖于IP网络。因此,数据网络中的入侵检测和容忍度对于电信和未来能源管理网络等其他领域的可靠性至关重要。当今的数据网络是由人类操作员通过保护机制的虚警率来应对海量的信息过载。本文研究了在企业网络中,告警还原和关联在支持安全管理员中的作用。我们提出了一种将入侵检测系统作为传感器的架构,并为人工操作员或自动执行器提供改进的报警数据。在电信测试网络中使用的三个传感器(Snort、Samhain和Syslog)的输出上演示了通过静态和自适应过滤、规范化和聚合来减少警报和相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
P2P architecture for scientific collaboration Property analysis of open networks of cooperative neuro-agents using AMAS theory An economic damage model for large-scale Internet attacks Code mobility for pervasive computing Mobile agent-based software management in grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1