{"title":"Robust stabilizing control laws for a class of second-order switched systems","authors":"Bo Hu, Xuping Xu, A. Michel, P. Antsaklis","doi":"10.1109/ACC.1999.786616","DOIUrl":null,"url":null,"abstract":"For a class of second-order switched systems consisting of two linear time-invariant (LTI) subsystems, we show that the so-called conic switching law proposed previously by the present authors is robust, not only in the sense that the control law is flexible (to be explained further), but also in the sense that the Lyapunov stability (resp. Lagrange stability) properties of the switched system are preserved in the presence of certain kinds of vanishing perturbations (resp., nonvanishing perturbations). The analysis is possible since the conic switching laws always possess certain kinds of \"quasiperiodic switching operations\". We also propose for a class of nonlinear second-order switched systems with time-invariant subsystems a switching control law which locally exponentially stabilizes the entire nonlinear switched system, provided that the conic switching law exponentially stabilizes the linearized switched systems (consisting of the linearization of each nonlinear subsystem). This switched control law is robust in the sense mentioned above.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.786616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121
Abstract
For a class of second-order switched systems consisting of two linear time-invariant (LTI) subsystems, we show that the so-called conic switching law proposed previously by the present authors is robust, not only in the sense that the control law is flexible (to be explained further), but also in the sense that the Lyapunov stability (resp. Lagrange stability) properties of the switched system are preserved in the presence of certain kinds of vanishing perturbations (resp., nonvanishing perturbations). The analysis is possible since the conic switching laws always possess certain kinds of "quasiperiodic switching operations". We also propose for a class of nonlinear second-order switched systems with time-invariant subsystems a switching control law which locally exponentially stabilizes the entire nonlinear switched system, provided that the conic switching law exponentially stabilizes the linearized switched systems (consisting of the linearization of each nonlinear subsystem). This switched control law is robust in the sense mentioned above.