Integrated Transfer Learning Algorithm Using Multi-source TrAdaBoost for Unbalanced Samples Classification

Zhixiang Yuan, Damang Bao, Zekai Chen, Ming Liu
{"title":"Integrated Transfer Learning Algorithm Using Multi-source TrAdaBoost for Unbalanced Samples Classification","authors":"Zhixiang Yuan, Damang Bao, Zekai Chen, Ming Liu","doi":"10.1109/CIIS.2017.37","DOIUrl":null,"url":null,"abstract":"To solve the binary classification transfer learning problem with similar data distributions and class imbalance between positive and negative samples in the target and source domains, we present an integrated transfer learning algorithm for multi-source unbalanced samples classification. We try to avoid the negative transfer problem by utilizing multiple source domains, and propose the new sample weights initialization and weights updating strategies to solve the class imbalance problem. Moreover, we propose a new elimination mechanism to eliminate the redundant samples in the multiple source domains, and then the time and memory costs of the classifier could be significantly reduced. Experimental results on standard UCI datasets show that the proposed algorithm outperforms the state-of-the-arts transfer learning algorithms in terms of F1-measure and AUC evaluations metrics.","PeriodicalId":254342,"journal":{"name":"2017 International Conference on Computing Intelligence and Information System (CIIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Intelligence and Information System (CIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIS.2017.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

To solve the binary classification transfer learning problem with similar data distributions and class imbalance between positive and negative samples in the target and source domains, we present an integrated transfer learning algorithm for multi-source unbalanced samples classification. We try to avoid the negative transfer problem by utilizing multiple source domains, and propose the new sample weights initialization and weights updating strategies to solve the class imbalance problem. Moreover, we propose a new elimination mechanism to eliminate the redundant samples in the multiple source domains, and then the time and memory costs of the classifier could be significantly reduced. Experimental results on standard UCI datasets show that the proposed algorithm outperforms the state-of-the-arts transfer learning algorithms in terms of F1-measure and AUC evaluations metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多源TrAdaBoost的非平衡样本分类集成迁移学习算法
为解决数据分布相似、目标域和源域正负样本分类不平衡的二元分类迁移学习问题,提出了一种多源不平衡样本分类的集成迁移学习算法。我们试图通过利用多源域避免负迁移问题,并提出了新的样本权值初始化和权值更新策略来解决类不平衡问题。此外,我们提出了一种新的消除机制来消除多源域中的冗余样本,从而可以显著降低分类器的时间和内存开销。在标准UCI数据集上的实验结果表明,该算法在f1测度和AUC评价指标方面优于目前最先进的迁移学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Traffic Anomaly Detection Based on Dynamic Programming Study on the Robustness Based on PID Fuzzy Controller The Best Performance Evaluation of Encryption Algorithms to Reduce Power Consumption in WSN Non-redundant Distributed Database Allocation Technology Research Research and Implementation Based on Three-Dimensional Model Watermarking Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1