The Virtue and Vice of Complexity in Equity Risk Premium Prediction

Brian Jacobsen
{"title":"The Virtue and Vice of Complexity in Equity Risk Premium Prediction","authors":"Brian Jacobsen","doi":"10.3905/jfds.2023.1.126","DOIUrl":null,"url":null,"abstract":"When forecasting the equity risk premium, simple techniques generate results that are easier to interpret than results from more complex techniques. If complex techniques have better performance, does the virtue of superior performance trump the vice of lack of interpretability? This presumes simpler techniques underperform. Complex does not equate to superior performance. Old and simple techniques like discriminant analysis combine the virtue of performance with the virtue of intelligibility. This article performs a horse race among stepwise quadratic discriminant analysis, classification trees, regression trees, and ridgeless regression. Sometimes, accuracy can be sacrificed in favor of better out-of-sample Sharpe ratios. This article also shows that preprocessing data using rolling percentage ranks can be better than using either an expanding window or Z-scores.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2023.1.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When forecasting the equity risk premium, simple techniques generate results that are easier to interpret than results from more complex techniques. If complex techniques have better performance, does the virtue of superior performance trump the vice of lack of interpretability? This presumes simpler techniques underperform. Complex does not equate to superior performance. Old and simple techniques like discriminant analysis combine the virtue of performance with the virtue of intelligibility. This article performs a horse race among stepwise quadratic discriminant analysis, classification trees, regression trees, and ridgeless regression. Sometimes, accuracy can be sacrificed in favor of better out-of-sample Sharpe ratios. This article also shows that preprocessing data using rolling percentage ranks can be better than using either an expanding window or Z-scores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股票风险溢价预测中复杂性的利弊
当预测股票风险溢价时,简单的技术产生的结果比更复杂的技术产生的结果更容易解释。如果复杂的技术具有更好的性能,那么性能优越的优点是否胜过缺乏可解释性的缺点?这假定更简单的技术表现不佳。复杂并不等同于卓越的表现。像判别分析这样古老而简单的技术将性能的优点与可理解性的优点结合起来。本文在逐步二次判别分析、分类树、回归树和无脊回归之间进行了一场竞赛。有时,为了获得更好的样本外夏普比率,可以牺牲精度。本文还表明,使用滚动百分比排名预处理数据可能比使用扩展窗口或z分数更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing Editor’s Letter Explainable Machine Learning Models of Consumer Credit Risk Predicting Returns with Machine Learning across Horizons, Firm Size, and Time Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models RIFT: Pretraining and Applications for Representations of Interrelated Financial Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1