Evaluation Of Random Forest–Based Analysis For The Gypsum Distribution In The Atacama Desert

D. Hoffmeister, M. Herbrecht, Tanja Kramm, P. Schulte
{"title":"Evaluation Of Random Forest–Based Analysis For The Gypsum Distribution In The Atacama Desert","authors":"D. Hoffmeister, M. Herbrecht, Tanja Kramm, P. Schulte","doi":"10.1109/LAGIRS48042.2020.9165655","DOIUrl":null,"url":null,"abstract":"Gypsum-rich material covers the hillslopes above $\\sim$1000 m of the Atacama and forms the particular landscape. In this contribution, we evaluate random forest-based analysis in order to predict the gypsum distribution in a specific area of-3000 km2, located in the hyperarid core of the Atacama. Therefore, three different sets of input variables were chosen. These variables reflect the different factors forming soil properties, according to digital soil mapping. The variables are derived from indices based on imagery of the ASTER and Landsat-8 satellite, geomorphometric parameters based on the Tandem-X World DE$\\mathrm{M}^{\\mathrm{T}\\mathrm{M}}$, as well as selected climate variables and geologic units. These three different models were used to evaluate the Ca-content derived from soil surface samples, reflecting gypsum content. All three different models derived high values of explained variation ($\\mathrm{r}^{2}\\gt$0.886), the RMSE is $\\sim$4500 mg$\\cdot k\\mathrm{g}^{-1}$ and the NRMSE is $\\sim$6%. Overall, this approach shows promising results in order to derive a gypsum content prediction for the whole Atacama. However, further investigation on the independent variables need to be conducted. In this case, the ferric oxides index (representing magnetite content), slope and a temperature gradient are the most important factors for predicting gypsum content.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gypsum-rich material covers the hillslopes above $\sim$1000 m of the Atacama and forms the particular landscape. In this contribution, we evaluate random forest-based analysis in order to predict the gypsum distribution in a specific area of-3000 km2, located in the hyperarid core of the Atacama. Therefore, three different sets of input variables were chosen. These variables reflect the different factors forming soil properties, according to digital soil mapping. The variables are derived from indices based on imagery of the ASTER and Landsat-8 satellite, geomorphometric parameters based on the Tandem-X World DE$\mathrm{M}^{\mathrm{T}\mathrm{M}}$, as well as selected climate variables and geologic units. These three different models were used to evaluate the Ca-content derived from soil surface samples, reflecting gypsum content. All three different models derived high values of explained variation ($\mathrm{r}^{2}\gt$0.886), the RMSE is $\sim$4500 mg$\cdot k\mathrm{g}^{-1}$ and the NRMSE is $\sim$6%. Overall, this approach shows promising results in order to derive a gypsum content prediction for the whole Atacama. However, further investigation on the independent variables need to be conducted. In this case, the ferric oxides index (representing magnetite content), slope and a temperature gradient are the most important factors for predicting gypsum content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林分析的阿塔卡马沙漠石膏分布评价
富含石膏的材料覆盖了阿塔卡马1000米以上的山坡,形成了独特的景观。在这篇文章中,我们评估了随机森林分析,以预测位于阿塔卡马超干旱核心的3000平方公里特定区域内的石膏分布。因此,我们选择了三组不同的输入变量。根据数字土壤制图,这些变量反映了形成土壤性质的不同因素。变量来源于基于ASTER和Landsat-8卫星影像的指数、基于Tandem-X World DE$\mathrm{M}^{\mathrm{T}\mathrm{M}}$的地貌参数以及选定的气候变量和地质单位。这三种不同的模型被用来评估来自土壤表面样品的钙含量,反映石膏含量。所有三种不同的模型都得到了高解释变异值($\ mathm {r}^{2}\gt$0.886), RMSE为$\sim$4500 mg$\cdot k\ mathm {g}^{-1}$, NRMSE为$\sim$6%。总的来说,这种方法在预测整个阿塔卡马的石膏含量方面显示出很好的结果。但是,需要对自变量进行进一步的调查。在这种情况下,氧化铁指数(代表磁铁矿含量)、坡度和温度梯度是预测石膏含量的最重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deforestation Polygon Assessment Tool: Providing Comprehensive Information On Deforestation In The Brazilian Cerrado Biome Assessment of rainfall influence on sentinel-1 time series on amazonian tropical forests aiming deforestation detection improvement Spatial Association To Characterize The Climate Teleconnection Patterns In Ecuador Based On Satellite Precipitation Estimates Subsidence in Maceio, Brazil, Characterized by Dinsar and Inverse Modeling Preliminary Analysis For Automatic Tidal Inlets Mapping Using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1