A Visualization Model For Massively Parallel Algorithms

R. Khanna, B. McMillin
{"title":"A Visualization Model For Massively Parallel Algorithms","authors":"R. Khanna, B. McMillin","doi":"10.1109/DMCC.1991.633346","DOIUrl":null,"url":null,"abstract":"A visualization model has been deireloped to analyse the performance of a massively parallel algorithm. Most visualization tools that have beten developed so far for performance analysis are based generally on individual processor information and commltrnication patterns. These tools, however, are inadequate ,for massively parallel computations. It is difSlcult to comprehend the visual information for many processors. The model, SMIW (Scientific visualization in Multicomputing for Interpretation of Large amounts of Injformation), addresses this problem by using abstract rqpresentations to attain a composite picture which gives better insight to the behavior of the algorithm. Chernoffs Faces have been selected to represent the multidimensional data because of their abiliry to portray multidimensional data in a very perceptible manner. SMILS has been used on an asynchronous massively parallel PDE (partial direrential equation) solver that is based on the multigrid paradigm. The visualization tool helps in tuning the control parameters of the multigrid algorithm to get optimal results.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"59 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A visualization model has been deireloped to analyse the performance of a massively parallel algorithm. Most visualization tools that have beten developed so far for performance analysis are based generally on individual processor information and commltrnication patterns. These tools, however, are inadequate ,for massively parallel computations. It is difSlcult to comprehend the visual information for many processors. The model, SMIW (Scientific visualization in Multicomputing for Interpretation of Large amounts of Injformation), addresses this problem by using abstract rqpresentations to attain a composite picture which gives better insight to the behavior of the algorithm. Chernoffs Faces have been selected to represent the multidimensional data because of their abiliry to portray multidimensional data in a very perceptible manner. SMILS has been used on an asynchronous massively parallel PDE (partial direrential equation) solver that is based on the multigrid paradigm. The visualization tool helps in tuning the control parameters of the multigrid algorithm to get optimal results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行算法的可视化模型
建立了一个可视化模型来分析大规模并行算法的性能。到目前为止,为性能分析开发的大多数可视化工具通常基于单个处理器信息和通信模式。然而,这些工具对于大规模并行计算来说是不够的。对于许多处理器来说,理解视觉信息是很困难的。该模型名为SMIW(用于解释大量信息的多计算科学可视化),通过使用抽象的rq表示来获得复合图像,从而更好地了解算法的行为,从而解决了这个问题。选择Chernoffs Faces来表示多维数据,因为它们能够以非常可感知的方式描绘多维数据。在基于多网格范式的异步大规模并行偏微分方程(PDE)求解器中应用了sims。可视化工具有助于调整多网格算法的控制参数,以获得最优结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Performance Environments for Parallel Systems Using Spanning-Trees for Balancing Dynamic Load on Multiprocessors Optimal Total Exchange on an SIMD Distributed-Memory Hypercube Structured Parallel Programming on Multicomputers Parallel Solutions to the Phase Problem in X-Ray Crystallography: An Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1