Denoising Ultrasonic Echo Signals with S-Transform and Non-negative matrix factorization

Ma Hongbao, Kang Yihua, Cai Xiang, Qiu Gongzhe, Cheng Si, Jin Xin
{"title":"Denoising Ultrasonic Echo Signals with S-Transform and Non-negative matrix factorization","authors":"Ma Hongbao, Kang Yihua, Cai Xiang, Qiu Gongzhe, Cheng Si, Jin Xin","doi":"10.1109/CCISP55629.2022.9974449","DOIUrl":null,"url":null,"abstract":"Ultrasonic Non-Destructive Evaluation (NDE) has been proven to be an effective means to assure the measurement of material properties. However, accurate detection of defect echoes buried in strong noise is challenging. A novel de-noising method based on S-transform and Non-negative matrix factorization is proposed in this paper. In the first stage, the S-transform was performed on the original signal to obtain the time-frequency distribution. Subsequently, the feature separation of echo signal and noise is realized by non-negative matrix decomposition. Finally, clear denoising defect waveforms are acquired by the inverse S-transform. Both simulation analysis and experimental results show the effectiveness and superiority of the proposed method in noise suppression of ultrasonic NDE.","PeriodicalId":431851,"journal":{"name":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCISP55629.2022.9974449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic Non-Destructive Evaluation (NDE) has been proven to be an effective means to assure the measurement of material properties. However, accurate detection of defect echoes buried in strong noise is challenging. A novel de-noising method based on S-transform and Non-negative matrix factorization is proposed in this paper. In the first stage, the S-transform was performed on the original signal to obtain the time-frequency distribution. Subsequently, the feature separation of echo signal and noise is realized by non-negative matrix decomposition. Finally, clear denoising defect waveforms are acquired by the inverse S-transform. Both simulation analysis and experimental results show the effectiveness and superiority of the proposed method in noise suppression of ultrasonic NDE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于s变换和非负矩阵分解的超声回波信号去噪
超声无损检测(NDE)已被证明是保证材料性能检测的有效手段。然而,在强噪声中准确检测缺陷回波是一个挑战。提出了一种基于s变换和非负矩阵分解的去噪方法。第一步,对原始信号进行s变换,得到时频分布;然后,通过非负矩阵分解实现回波信号和噪声的特征分离。最后,通过s逆变换得到了清晰的去噪缺陷波形。仿真分析和实验结果均表明了该方法对超声无损检测噪声抑制的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reliable intra-relay cooperative relay network coupling with spatial modulation for the dynamic V2V communication Research on PCEP Extension for VLAN-based Traffic Forwarding in cloud network integration Analysis of the effect of carbon emissions on meteorological factors in Yunnan province Small Sample Signal Modulation Recognition based on Higher-order Cumulants and CatBoost AFMTD: Anchor-free Frame for Multi-scale Target Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1