A Factored Relevance Model for Contextual Point-of-Interest Recommendation

Anirban Chakraborty, Debasis Ganguly, A. Caputo, S. Lawless
{"title":"A Factored Relevance Model for Contextual Point-of-Interest Recommendation","authors":"Anirban Chakraborty, Debasis Ganguly, A. Caputo, S. Lawless","doi":"10.1145/3341981.3344230","DOIUrl":null,"url":null,"abstract":"The challenge of providing personalized and contextually appropriate recommendations to a user is faced in a range of use-cases, e.g., recommendations for movies, places to visit, articles to read etc. In this paper, we focus on one such application, namely that of suggesting 'points of interest' (POIs) to a user given her current location, by leveraging relevant information from her past preferences. An automated contextual recommendation algorithm is likely to work well if it can extract information from the preference history of a user (exploitation) and effectively combine it with information from the user's current context (exploration) to predict an item's 'usefulness' in the new context. To balance this trade-off between exploration and exploitation, we propose a generic unsupervised framework involving a factored relevance model (FRLM), comprising two distinct components, one corresponding to the historical information from past contexts, and the other pertaining to the information from the local context. Our experiments are conducted on the TREC contextual suggestion (TREC-CS) 2016 dataset. The results of our experiments demonstrate the effectiveness of our proposed approach in comparison to a number of standard IR and recommender-based baselines.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The challenge of providing personalized and contextually appropriate recommendations to a user is faced in a range of use-cases, e.g., recommendations for movies, places to visit, articles to read etc. In this paper, we focus on one such application, namely that of suggesting 'points of interest' (POIs) to a user given her current location, by leveraging relevant information from her past preferences. An automated contextual recommendation algorithm is likely to work well if it can extract information from the preference history of a user (exploitation) and effectively combine it with information from the user's current context (exploration) to predict an item's 'usefulness' in the new context. To balance this trade-off between exploration and exploitation, we propose a generic unsupervised framework involving a factored relevance model (FRLM), comprising two distinct components, one corresponding to the historical information from past contexts, and the other pertaining to the information from the local context. Our experiments are conducted on the TREC contextual suggestion (TREC-CS) 2016 dataset. The results of our experiments demonstrate the effectiveness of our proposed approach in comparison to a number of standard IR and recommender-based baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向用户提供个性化的、上下文合适的推荐,在很多用例中都面临着挑战,例如,推荐电影、参观地点、阅读文章等。在本文中,我们专注于一个这样的应用程序,即通过利用用户过去偏好的相关信息,向用户提供当前位置的“兴趣点”(POIs)建议。如果一个自动上下文推荐算法能够从用户的偏好历史中提取信息(利用),并有效地将其与用户当前上下文的信息(探索)结合起来,以预测一个项目在新上下文中的“有用性”,那么它可能会工作得很好。为了平衡探索和开发之间的这种权衡,我们提出了一个涉及因子关联模型(FRLM)的通用无监督框架,该框架由两个不同的组件组成,一个对应于来自过去上下文的历史信息,另一个对应于来自本地上下文的信息。我们的实验是在TREC上下文建议(TREC- cs) 2016数据集上进行的。我们的实验结果表明,与许多标准IR和基于推荐的基线相比,我们提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tangent-CFT: An Embedding Model for Mathematical Formulas Statistical Significance Testing in Theory and in Practice Utilizing Passages in Fusion-based Document Retrieval Learning a Better Negative Sampling Policy with Deep Neural Networks for Search A Study of Query Performance Prediction for Answer Quality Determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1