{"title":"Estimation of Three-Dimensional Center of Gravity Relocation for Ground Vehicles with Tire Blowout","authors":"Ao Li, Yan Chen, Wen-Chiao Lin, Xinyu Du","doi":"10.23919/ACC53348.2022.9867659","DOIUrl":null,"url":null,"abstract":"Influenced by tire effective radius change, suspension rearrangement, and pitch/roll disturbance due to tire blowout, the vehicle center of gravity (CG) can significantly relocate toward the blown-out tire position. This paper proposes an estimation method of the CG relocation for ground vehicles with tire blowout by utilizing vertical force variations and geometric relationships in tire blowout events. Based on a new recursive least square (RLS) formulation in this paper, the three-dimensional (3D) CG relocation (i.e., the height, the longitudinal and lateral positions) can be estimated simultaneously. Matlab/Simulink and CarSim® co-simulation results for different tire blowout locations validate that the proposed estimation method can effectively and accurately capture the vehicle 3D CG relocation after tire blowout.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Influenced by tire effective radius change, suspension rearrangement, and pitch/roll disturbance due to tire blowout, the vehicle center of gravity (CG) can significantly relocate toward the blown-out tire position. This paper proposes an estimation method of the CG relocation for ground vehicles with tire blowout by utilizing vertical force variations and geometric relationships in tire blowout events. Based on a new recursive least square (RLS) formulation in this paper, the three-dimensional (3D) CG relocation (i.e., the height, the longitudinal and lateral positions) can be estimated simultaneously. Matlab/Simulink and CarSim® co-simulation results for different tire blowout locations validate that the proposed estimation method can effectively and accurately capture the vehicle 3D CG relocation after tire blowout.