Efficient pose machine based on parameter-sensitive hashing

Shan Lin, Bowen Liu, Yang Wen, Anum Masood, Bin Sheng, P. Li, Xin Liu, Haoyang Yu, Weiyao Lin
{"title":"Efficient pose machine based on parameter-sensitive hashing","authors":"Shan Lin, Bowen Liu, Yang Wen, Anum Masood, Bin Sheng, P. Li, Xin Liu, Haoyang Yu, Weiyao Lin","doi":"10.1109/PIC.2017.8359590","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient pose machine using Parameter-Sensitive Hashing(PSH) techniques. Based on the original pose machine, which is a sequential prediction framework, we employ the Convolutional Neural Network(CNN) to extract features. To handle the high dimensional feature vectors and conduct similarity search efficiently, we use the Parameter-Sensitive Hashing Function(PSHF) to map the feature vectors into binary values. The property of the PSHF ensures that the collisions happen when two vectors are near to each other and the search can be completed in a fractional power time. We apply our approach to the popular datasets including LSP and FLIC and make a comparison with previous methods based on a criterion of strict Percentage of Correct Parts(PCP). Experimental results reflect that our approach outperforms previous methods in accuracy.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an efficient pose machine using Parameter-Sensitive Hashing(PSH) techniques. Based on the original pose machine, which is a sequential prediction framework, we employ the Convolutional Neural Network(CNN) to extract features. To handle the high dimensional feature vectors and conduct similarity search efficiently, we use the Parameter-Sensitive Hashing Function(PSHF) to map the feature vectors into binary values. The property of the PSHF ensures that the collisions happen when two vectors are near to each other and the search can be completed in a fractional power time. We apply our approach to the popular datasets including LSP and FLIC and make a comparison with previous methods based on a criterion of strict Percentage of Correct Parts(PCP). Experimental results reflect that our approach outperforms previous methods in accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数敏感哈希的高效姿态机
本文提出了一种基于参数敏感哈希(PSH)技术的高效姿态机。在原始姿态机序列预测框架的基础上,采用卷积神经网络(CNN)提取特征。为了有效地处理高维特征向量并进行相似性搜索,我们使用参数敏感哈希函数(PSHF)将特征向量映射为二值。PSHF的性质保证了碰撞发生在两个矢量彼此接近的情况下,并且可以在分数次幂时间内完成搜索。我们将该方法应用于LSP和FLIC等流行数据集,并基于严格的正确零件百分比(PCP)标准与先前的方法进行了比较。实验结果表明,我们的方法在精度上优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation method and decision support of network education based on association rules ACER: An adaptive context-aware ensemble regression model for airfare price prediction An improved constraint model for team tactical position selection in games Trust your wallet: A new online wallet architecture for Bitcoin An approach based on decision tree for analysis of behavior with combined cycle power plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1