Investigating the Important Temporal Modulations for Deep-Learning-Based Speech Activity Detection

Tyler Vuong, Nikhil Madaan, Rohan Panda, R. Stern
{"title":"Investigating the Important Temporal Modulations for Deep-Learning-Based Speech Activity Detection","authors":"Tyler Vuong, Nikhil Madaan, Rohan Panda, R. Stern","doi":"10.1109/SLT54892.2023.10022462","DOIUrl":null,"url":null,"abstract":"We describe a learnable modulation spectrogram feature for speech activity detection (SAD). Modulation features capture the temporal dynamics of each frequency subband. We compute learnable modulation spectrogram features by first calculating the log-mel spectrogram. Next, we filter each frequency subband with a bandpass filter that contains a learnable center frequency. The resulting SAD system was evaluated on the Fearless Steps Phase-04 SAD challenge. Experimental results showed that temporal modulations around the 4–6 Hz range are crucial for deep-learning-based SAD. These experimental results align with previous studies that found slow temporal modulation to be most important for speech-processing tasks and speech intelligibility. Additionally, we found that the learnable modulation spectrogram feature outperforms both the standard log-mel and fixed modulation spectrogram features on the Fearless Steps Phase-04 SAD test set.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We describe a learnable modulation spectrogram feature for speech activity detection (SAD). Modulation features capture the temporal dynamics of each frequency subband. We compute learnable modulation spectrogram features by first calculating the log-mel spectrogram. Next, we filter each frequency subband with a bandpass filter that contains a learnable center frequency. The resulting SAD system was evaluated on the Fearless Steps Phase-04 SAD challenge. Experimental results showed that temporal modulations around the 4–6 Hz range are crucial for deep-learning-based SAD. These experimental results align with previous studies that found slow temporal modulation to be most important for speech-processing tasks and speech intelligibility. Additionally, we found that the learnable modulation spectrogram feature outperforms both the standard log-mel and fixed modulation spectrogram features on the Fearless Steps Phase-04 SAD test set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究基于深度学习的语音活动检测的重要时间调制
我们描述了一种用于语音活动检测(SAD)的可学习调制谱特征。调制特性捕获每个频率子带的时间动态。我们首先通过计算对数谱图来计算可学习的调制谱图特征。接下来,我们用包含可学习中心频率的带通滤波器滤波每个频率子带。由此产生的SAD系统在Fearless Steps Phase-04 SAD挑战中进行了评估。实验结果表明,4-6 Hz范围内的时间调制对于基于深度学习的SAD至关重要。这些实验结果与先前的研究一致,发现慢时间调制对语音处理任务和语音可理解性最重要。此外,我们发现在Fearless Steps Phase-04 SAD测试集上,可学习的调制谱图特征优于标准对数和固定调制谱图特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phone-Level Pronunciation Scoring for L1 Using Weighted-Dynamic Time Warping The Clever Hans Effect in Voice Spoofing Detection A Multi-Modal Array of Interpretable Features to Evaluate Language and Speech Patterns in Different Neurological Disorders Unsupervised Domain Adaptation of Neural PLDA Using Segment Pairs for Speaker Verification Learning Accent Representation with Multi-Level VAE Towards Controllable Speech Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1