Real-Time Energy Monitoring in IoT-enabled Mobile Devices

N. Shivaraman, Seima Saki, Zhiwei Liu, Saravanan Ramanathan, A. Easwaran, S. Steinhorst
{"title":"Real-Time Energy Monitoring in IoT-enabled Mobile Devices","authors":"N. Shivaraman, Seima Saki, Zhiwei Liu, Saravanan Ramanathan, A. Easwaran, S. Steinhorst","doi":"10.23919/DATE48585.2020.9116577","DOIUrl":null,"url":null,"abstract":"With rapid advancements in the Internet of Things (IoT) paradigm, electrical devices in the near future is expected to have IoT capabilities. This enables fine-grained tracking of individual energy consumption data of such devices, offering location-independent per-device billing. Thus, it is more fine-grained than the location-based metering of state-of-the-art infrastructure, which traditionally aggregates on a building or household level, defining the entity to be billed. However, such in-device energy metering is susceptible to manipulation and fraud. As a remedy, we propose a decentralized metering architecture that enables devices with IoT capabilities to measure their own energy consumption. In this architecture, the device-level consumption is additionally reported to a system-level aggregator that verifies distributed information and provides secure data storage using Blockchain, preventing data manipulation by untrusted entities. Using evaluations on an experimental testbed, we show that the proposed architecture supports device mobility and enables location-independent monitoring of energy consumption.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With rapid advancements in the Internet of Things (IoT) paradigm, electrical devices in the near future is expected to have IoT capabilities. This enables fine-grained tracking of individual energy consumption data of such devices, offering location-independent per-device billing. Thus, it is more fine-grained than the location-based metering of state-of-the-art infrastructure, which traditionally aggregates on a building or household level, defining the entity to be billed. However, such in-device energy metering is susceptible to manipulation and fraud. As a remedy, we propose a decentralized metering architecture that enables devices with IoT capabilities to measure their own energy consumption. In this architecture, the device-level consumption is additionally reported to a system-level aggregator that verifies distributed information and provides secure data storage using Blockchain, preventing data manipulation by untrusted entities. Using evaluations on an experimental testbed, we show that the proposed architecture supports device mobility and enables location-independent monitoring of energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持物联网的移动设备中的实时能源监测
随着物联网(IoT)范式的快速发展,预计在不久的将来,电气设备将具有物联网功能。这样就可以对此类设备的单个能耗数据进行细粒度跟踪,提供与位置无关的每台设备计费。因此,它比最先进的基础设施的基于位置的计量更细粒度,后者传统上在建筑物或家庭级别上聚集,定义要计费的实体。然而,这种设备内能量计量容易受到操纵和欺诈。作为补救措施,我们提出了一种分散的计量架构,使具有物联网功能的设备能够测量自己的能耗。在这个体系结构中,设备级的消费被额外报告给系统级聚合器,该聚合器验证分布式信息,并使用区块链提供安全的数据存储,防止不受信任的实体操纵数据。通过对实验测试平台的评估,我们证明了所提出的架构支持设备移动性,并能够实现与位置无关的能耗监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1