{"title":"Pruned query evaluation using pre-computed impacts","authors":"V. Anh, Alistair Moffat","doi":"10.1145/1148170.1148235","DOIUrl":null,"url":null,"abstract":"Exhaustive evaluation of ranked queries can be expensive, particularly when only a small subset of the overall ranking is required, or when queries contain common terms. This concern gives rise to techniques for dynamic query pruning, that is, methods for eliminating redundant parts of the usual exhaustive evaluation, yet still generating a demonstrably \"good enough\" set of answers to the query. In this work we propose new pruning methods that make use of impact-sorted indexes. Compared to exhaustive evaluation, the new methods reduce the amount of computation performed, reduce the amount of memory required for accumulators, reduce the amount of data transferred from disk, and at the same time allow performance guarantees in terms of precision and mean average precision. These strong claims are backed by experiments using the TREC Terabyte collection and queries.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"9 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177
Abstract
Exhaustive evaluation of ranked queries can be expensive, particularly when only a small subset of the overall ranking is required, or when queries contain common terms. This concern gives rise to techniques for dynamic query pruning, that is, methods for eliminating redundant parts of the usual exhaustive evaluation, yet still generating a demonstrably "good enough" set of answers to the query. In this work we propose new pruning methods that make use of impact-sorted indexes. Compared to exhaustive evaluation, the new methods reduce the amount of computation performed, reduce the amount of memory required for accumulators, reduce the amount of data transferred from disk, and at the same time allow performance guarantees in terms of precision and mean average precision. These strong claims are backed by experiments using the TREC Terabyte collection and queries.