The injection petrol control system about CMAC neural networks

Yaming Han, H. Tack
{"title":"The injection petrol control system about CMAC neural networks","authors":"Yaming Han, H. Tack","doi":"10.6109/JKIICE.2017.21.2.395","DOIUrl":null,"url":null,"abstract":"The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved. 키워드 : CMAC 신경회로망, 연료분사 제어, 산소제어, 공연비 Key word : CMAC neural network, automobile engine, injection petrol control, ideal mixing ratio Received 10 November 2016, Revised 19 December 2016, Accepted 04 January 2017 * Corresponding Author Han-Ho Tack(E-mail:fmtack@gntech.ac.kr, Tel:+82-55-751-3332) Department of Electronic Engineering, Gyeongnam National University of Science and Technology, Gyeongnam 52725, Korea Open Access http://doi.org/10.6109/jkiice.2017.21.2.395 print ISSN: 2234-4772 online ISSN: 2288-4165 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/li-censes/ by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright C The Korea Institute of Information and Communication Engineering. Journal of the Korea Institute of Information and Communication Engineering 한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 21, No. 2 : 395~400 Feb. 2017","PeriodicalId":136663,"journal":{"name":"The Journal of the Korean Institute of Information and Communication Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Korean Institute of Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/JKIICE.2017.21.2.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved. 키워드 : CMAC 신경회로망, 연료분사 제어, 산소제어, 공연비 Key word : CMAC neural network, automobile engine, injection petrol control, ideal mixing ratio Received 10 November 2016, Revised 19 December 2016, Accepted 04 January 2017 * Corresponding Author Han-Ho Tack(E-mail:fmtack@gntech.ac.kr, Tel:+82-55-751-3332) Department of Electronic Engineering, Gyeongnam National University of Science and Technology, Gyeongnam 52725, Korea Open Access http://doi.org/10.6109/jkiice.2017.21.2.395 print ISSN: 2234-4772 online ISSN: 2288-4165 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/li-censes/ by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright C The Korea Institute of Information and Communication Engineering. Journal of the Korea Institute of Information and Communication Engineering 한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 21, No. 2 : 395~400 Feb. 2017
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CMAC神经网络的燃油喷射控制系统
利用小脑模型关节控制器(CMAC)神经网络对汽车燃油喷射系统的空燃比控制进行了研究。由于内燃机和燃油喷射动力学的高度非线性,导致了燃油喷射的不连续,传统的基于表查找的控制方法存在控制精度低的问题。CMAC神经网络具有分布式存储信息、并行处理信息、自组织和自学习功能等优点。CMAC神经网络独特的结构和处理方法使其具有广泛的应用前景。此外,通过分析氧传感器的输出特性,计算出维持空气燃料比的喷油速率。CMAC可以很容易地补偿时间延迟。实验结果表明,该方法优于传统的燃油控制方法,在任何工况下都能保持发动机理想的混合比。动力性和经济性明显提高。키워드:小脑신경회로망,연료분사제어,산소제어,공연비关键字:小脑模型神经网络,汽车发动机、汽油喷射控制、理想的混合比收到2016年11月10日,修订后的2016年12月19日,接受了2017年1月04 *通讯作者Han-Ho策略(电子邮件:fmtack@gntech.ac.kr, Tel: + 82-55-751-3332)电子工程系,看上去国立大学的科学和技术,看上去就52725年,朝鲜开放访问http://doi.org/10.6109/jkiice.2017.21.2.395打印ISSN:这是一篇基于知识共享署名非商业许可(http://creativecommons.org/li-censes/ by-nc/3.0/)的开放获取文章,该许可允许在任何媒介上不受限制地进行非商业使用、分发和复制,前提是正确引用原创作品。版权所有C韩国信息通信工程研究院。韩国信息通信工程学院学报[J]。韩国国际研究所。Eng)。第21卷第2期:395~400 2017年2月
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moon Administration’s ICT Startup Policy 스마트폰 동영상을 활용한 자가관찰 방법의 자율실습이 간호학생의 핵심기본간호술 교육에 미치는 효과 제4차 산업혁명 대응 전략 :일본의 사례와 시사점 스마트 모빌리티 상태 알림 시스템 설계 스마트 팩토리 환경에서 클라우드와 학습된 요소 공유 방법 기반의 효율적 엣지 컴퓨팅 설계
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1