Accuracy estimation of approximated Gaussian distribution obtained from Fast Forward Selection scenario reduction algorithm

N. Patel, J. Serrao
{"title":"Accuracy estimation of approximated Gaussian distribution obtained from Fast Forward Selection scenario reduction algorithm","authors":"N. Patel, J. Serrao","doi":"10.1109/ICESA.2015.7503368","DOIUrl":null,"url":null,"abstract":"Probability distributions are used to represent uncertainty. One area of application of probability distribution is optimization under uncertainty more specifically known as Stochastic Integer Programming. Distributions with large number of scenarios increase computational complexity. Fast Forward Selection scenario (FFS) reduction algorithm provides a way to approximate the probability distribution. The paper applies FFS to a gaussian distribution and estimates the original distribution with lower number of scenarios while maintaining the overall variation of probability curve similar to the original curve. New probability density of the approximated distribution is close to the original distribution.","PeriodicalId":259816,"journal":{"name":"2015 International Conference on Energy Systems and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Energy Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESA.2015.7503368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Probability distributions are used to represent uncertainty. One area of application of probability distribution is optimization under uncertainty more specifically known as Stochastic Integer Programming. Distributions with large number of scenarios increase computational complexity. Fast Forward Selection scenario (FFS) reduction algorithm provides a way to approximate the probability distribution. The paper applies FFS to a gaussian distribution and estimates the original distribution with lower number of scenarios while maintaining the overall variation of probability curve similar to the original curve. New probability density of the approximated distribution is close to the original distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于快进选择场景约简算法的近似高斯分布精度估计
概率分布用来表示不确定性。概率分布的一个应用领域是不确定性下的优化,更具体地说是随机整数规划。具有大量场景的分布增加了计算复杂性。快进选择场景(FFS)约简算法提供了一种近似概率分布的方法。本文将FFS应用于高斯分布,在保持概率曲线总体变化与原始曲线相似的情况下,对情景数较少的原始分布进行估计。新的近似分布的概率密度接近原分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance assessment of steel reheating furnace GREEN SOLUTION (GS): A new initiative for Energy Efficient Computing where Humans and Machines work together Ingenious energy monitoring, control and management of electrical supply Smart parking management system using RFID and OCR MLP-neural network based detection and classification of Power Quality Disturbances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1