An Ensemble Co-Evolutionary based Algorithm for Classification Problems

Vũ Văn Trường, Bùi Thu Lâm, N. Trung
{"title":"An Ensemble Co-Evolutionary based Algorithm for Classification Problems","authors":"Vũ Văn Trường, Bùi Thu Lâm, N. Trung","doi":"10.32913/MIC-ICT-RESEARCH.V2019.N1.852","DOIUrl":null,"url":null,"abstract":"In this paper, the authors propose a dual-population co-evolutionary approach using ensemble learning approach (E-SOCA)  to  simultaneously  solve  both  feature  subset selection  and  optimal  classifier  design.  Different  from previous  studies  where  each  population  retains  only  one best individual (Elite) after co-evolution, in this study, an elite  community  will  be  stored  and  calculated  together through  an  ensemble  learning  algorithm  to  produce  the final    classification    result.    Experimental    results    on standard  UCI  problems  with  a  variety  of  input  features ranging from small to large sizes shows that the proposed algorithm  results  in  more  accuracy  and  stability  than traditional algorithms.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Development on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32913/MIC-ICT-RESEARCH.V2019.N1.852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the authors propose a dual-population co-evolutionary approach using ensemble learning approach (E-SOCA)  to  simultaneously  solve  both  feature  subset selection  and  optimal  classifier  design.  Different  from previous  studies  where  each  population  retains  only  one best individual (Elite) after co-evolution, in this study, an elite  community  will  be  stored  and  calculated  together through  an  ensemble  learning  algorithm  to  produce  the final    classification    result.    Experimental    results    on standard  UCI  problems  with  a  variety  of  input  features ranging from small to large sizes shows that the proposed algorithm  results  in  more  accuracy  and  stability  than traditional algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成协同进化的分类问题算法
在本文中,作者提出了一种双种群协同进化方法,利用集成学习方法(E-SOCA)同时解决特征子集选择和最优分类器设计。与以往研究中每个种群在共同进化后只保留一个最优个体(Elite)不同,本研究将通过集成学习算法将一个精英群体存储并一起计算,从而产生最终的分类结果。实验结果表明,与传统算法相比,该算法具有更高的精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Một thuật toán định tuyến cân bằng năng lượng trong mạng cảm biến không dây dựa trên SDN Location Fusion and Data Augmentation for Thoracic Abnormalites Detection in Chest X-Ray Images A review of cyber security risk assessment for web systems during its deployment and operation Surveying Some Metaheuristic Algorithms For Solving Maximum Clique Graph Problem Deep Learning of Image Representations with Convolutional Neural Networks Autoencoder for Image Retrieval with Relevance Feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1