Parametric and Implicit Features-Based UAV-UGVs Time-Varying Formation Tracking: Dynamic Approach

Ahmed Allam, A. Nemra, M. Tadjine
{"title":"Parametric and Implicit Features-Based UAV-UGVs Time-Varying Formation Tracking: Dynamic Approach","authors":"Ahmed Allam, A. Nemra, M. Tadjine","doi":"10.1142/s2301385022500066","DOIUrl":null,"url":null,"abstract":"Flexible and robust Time-Varying Formation (TVF) tracking of Unmanned Ground Vehicles (UGVs) guided by an Unmanned Aerial Vehicle (UAV) is considered in this paper. The UAV–UGVs system control model is based on leader-follower approach, where the control scheme consists of two consecutive tasks, namely, deployment task and TVF tracking. Accordingly, two novel nonlinear controllers are proposed for controlling the UGVs formation. First, unlike the classical frameworks on UGVs formation tracking, for which only particular shapes are handled (e.g. circle, square, ellipse), we propose a UGVs deployment-controller ensuring to reach free-formation shapes. The key feature is in using the estimated implicit representation of the desired formation shape as a potential function to generate the UGVs reference trajectory. Second, in the TVF tracking task, a robust cascaded velocity/torque controller for UGVs is proposed based on kinematic and dynamic models. Differently from the classical backstepping framework, the key idea is in introducing an auxiliary control input, in such a way that the overall UGV dynamics is converted into a simpler and modular control structure. As such, the auxiliary input is used to control indirectly the actual UGVs velocity vector. A signum term is added to the torque-input to compensate for the unknown external disturbances and unmodeled dynamics. Numerical simulation shows the effectiveness of the proposed formation controllers compared with the case when the perfect velocity-tracking assumption holds. Experimental results are further provided using three festos Robtino robots to show the validity of the proposed TVF tracking velocity-control scheme.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2301385022500066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Flexible and robust Time-Varying Formation (TVF) tracking of Unmanned Ground Vehicles (UGVs) guided by an Unmanned Aerial Vehicle (UAV) is considered in this paper. The UAV–UGVs system control model is based on leader-follower approach, where the control scheme consists of two consecutive tasks, namely, deployment task and TVF tracking. Accordingly, two novel nonlinear controllers are proposed for controlling the UGVs formation. First, unlike the classical frameworks on UGVs formation tracking, for which only particular shapes are handled (e.g. circle, square, ellipse), we propose a UGVs deployment-controller ensuring to reach free-formation shapes. The key feature is in using the estimated implicit representation of the desired formation shape as a potential function to generate the UGVs reference trajectory. Second, in the TVF tracking task, a robust cascaded velocity/torque controller for UGVs is proposed based on kinematic and dynamic models. Differently from the classical backstepping framework, the key idea is in introducing an auxiliary control input, in such a way that the overall UGV dynamics is converted into a simpler and modular control structure. As such, the auxiliary input is used to control indirectly the actual UGVs velocity vector. A signum term is added to the torque-input to compensate for the unknown external disturbances and unmodeled dynamics. Numerical simulation shows the effectiveness of the proposed formation controllers compared with the case when the perfect velocity-tracking assumption holds. Experimental results are further provided using three festos Robtino robots to show the validity of the proposed TVF tracking velocity-control scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数和隐式特征的uav - ugv时变编队跟踪:动态方法
研究了无人机制导下无人地面车辆的柔性鲁棒时变编队跟踪问题。uav - ugv系统控制模型基于leader-follower方法,控制方案由两个连续任务组成,即部署任务和TVF跟踪。据此,提出了两种新颖的非线性控制器来控制ugv编队。首先,与传统的ugv编队跟踪框架(只处理特定形状(如圆形、正方形、椭圆形))不同,我们提出了一个ugv部署控制器,确保达到自由编队形状。该方法的关键特点是将预期地层形状的隐式表示作为潜在函数来生成ugv参考轨迹。其次,在TVF跟踪任务中,提出了一种基于运动学和动力学模型的ugv级联速度/转矩鲁棒控制器。与传统的反步框架不同,其关键思想是引入辅助控制输入,以这种方式将整个UGV动力学转换为更简单的模块化控制结构。因此,辅助输入用于间接控制实际的ugv速度矢量。在转矩输入中加入sgn项以补偿未知的外部干扰和未建模的动力学。数值仿真结果表明,与完全速度跟踪假设成立的情况相比,所提出的编队控制器是有效的。利用3个festos Robtino机器人进行了实验,验证了所提出的TVF跟踪速度控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Perception, Decision and Control of Unmanned Systems Under Complex Conditions Modeling and Quantitative Evaluation Method of Environmental Complexity for Measuring Autonomous Capabilities of Military Unmanned Ground Vehicles Recent Developments in Event-Triggered Control of Nonlinear Systems: An Overview Physical Modeling, Simulation and Validation of Small Fixed-Wing UAV An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1