{"title":"An Efficient Algorithm for Online Soft Real-Time Task Placement on Reconfigurable Hardware Devices","authors":"Jin Cui, Z. Gu, Weichen Liu, Qingxu Deng","doi":"10.1109/ISORC.2007.18","DOIUrl":null,"url":null,"abstract":"Reconfigurable devices such as field programmable gate arrays (FPGAs) are very popular in today's embedded systems (design due to their low-cost, high-performance and flexibility. Partially runtime-reconfigurable (PRTR) FPGAs allow hardware tasks to be placed and removed dynamically at runtime. Hardware task scheduling on PRTR FPGAs brings many challenging issues to traditional real-time scheduling theory, which have not been adequately addressed by the real-time research community compared to software task scheduling on CPUs. In this paper, we present an efficient online task placement algorithm for minimizing fragmentation on PRTR FPGAs. First, we present a novel 2D area fragmentation metric that takes into account probability distribution of sizes of future task arrivals; second, we take into the time axis to obtain a 3D fragmentation metric. Simulation experiments indicate that our techniques result in low ratio of task rejection and high FPGA utilization compared to existing techniques","PeriodicalId":265471,"journal":{"name":"10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Reconfigurable devices such as field programmable gate arrays (FPGAs) are very popular in today's embedded systems (design due to their low-cost, high-performance and flexibility. Partially runtime-reconfigurable (PRTR) FPGAs allow hardware tasks to be placed and removed dynamically at runtime. Hardware task scheduling on PRTR FPGAs brings many challenging issues to traditional real-time scheduling theory, which have not been adequately addressed by the real-time research community compared to software task scheduling on CPUs. In this paper, we present an efficient online task placement algorithm for minimizing fragmentation on PRTR FPGAs. First, we present a novel 2D area fragmentation metric that takes into account probability distribution of sizes of future task arrivals; second, we take into the time axis to obtain a 3D fragmentation metric. Simulation experiments indicate that our techniques result in low ratio of task rejection and high FPGA utilization compared to existing techniques