Application of data mining in fault diagnosis of induction motor

Parth Sarathi Panigrahy, P. Konar, P. Chattopadhyay
{"title":"Application of data mining in fault diagnosis of induction motor","authors":"Parth Sarathi Panigrahy, P. Konar, P. Chattopadhyay","doi":"10.1109/CMI.2016.7413754","DOIUrl":null,"url":null,"abstract":"Data driven approaches are gaining popularity in the field of condition monitoring due to their knowledge based fault identification capability for wide range of motor operation. Particularly the method, based on mining the data can encompass the wide behavioral operation of induction motor drive system in industries. Therefore, appropriate low cost instrumentation embedding an efficient algorithm becomes the industrial demand for fault diagnosis of induction motor drive. A hardware friendly algorithm for multi-class fault diagnosis by applying data mining technique is proposed in this paper. Most frequently associated faults like bearing fault, stator inter-turn fault, broken rotor bar fault are investigated for a drive fed induction motor. Discrete wavelet transform-Inverse discrete wavelet transform (DWT-IDWT) algorithm is used to obtain the unique characteristics from each synthesized sub-band and these filtered signals are exploited for feature extraction. A feature selection technique based on Genetic Algorithm (GA) is utilized to identify the potential features for reducing the dimensionality of the feature space. The use of smallest length filter of 2 coefficients (db1) for DWT-IDWT algorithm and 6 relevant features has made the proposed algorithm computationally efficient. The classification accuracy for the investigated multiple faults are found to be quite appreciable. Further, a comparative study is also done using different classifiers: k-NN, MLP and RBF.","PeriodicalId":244262,"journal":{"name":"2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI.2016.7413754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Data driven approaches are gaining popularity in the field of condition monitoring due to their knowledge based fault identification capability for wide range of motor operation. Particularly the method, based on mining the data can encompass the wide behavioral operation of induction motor drive system in industries. Therefore, appropriate low cost instrumentation embedding an efficient algorithm becomes the industrial demand for fault diagnosis of induction motor drive. A hardware friendly algorithm for multi-class fault diagnosis by applying data mining technique is proposed in this paper. Most frequently associated faults like bearing fault, stator inter-turn fault, broken rotor bar fault are investigated for a drive fed induction motor. Discrete wavelet transform-Inverse discrete wavelet transform (DWT-IDWT) algorithm is used to obtain the unique characteristics from each synthesized sub-band and these filtered signals are exploited for feature extraction. A feature selection technique based on Genetic Algorithm (GA) is utilized to identify the potential features for reducing the dimensionality of the feature space. The use of smallest length filter of 2 coefficients (db1) for DWT-IDWT algorithm and 6 relevant features has made the proposed algorithm computationally efficient. The classification accuracy for the investigated multiple faults are found to be quite appreciable. Further, a comparative study is also done using different classifiers: k-NN, MLP and RBF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据挖掘在感应电动机故障诊断中的应用
数据驱动方法在状态监测领域越来越受欢迎,因为它们基于知识的故障识别能力适用于广泛的电机运行。特别是基于数据挖掘的方法,可以涵盖工业中感应电机驱动系统的广泛行为运行。因此,合适的低成本仪器嵌入高效算法成为感应电机驱动故障诊断的工业需求。提出了一种基于数据挖掘技术的硬件友好型多类故障诊断算法。研究了驱动式异步电动机轴承故障、定子匝间故障、转子断条故障等常见故障。采用离散小波变换-反离散小波变换(DWT-IDWT)算法从合成的每个子带中获得唯一的特征,并利用这些滤波后的信号进行特征提取。利用基于遗传算法的特征选择技术识别潜在特征,降低特征空间的维数。DWT-IDWT算法采用2系数最小长度滤波器(db1)和6个相关特征,提高了算法的计算效率。对所研究的多故障进行了分类,发现分类精度相当高。此外,还使用不同的分类器:k-NN、MLP和RBF进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guaranteed performance PID controller for UAV pitch control Optimal PID controller design of an inverted pendulum dynamics: A hybrid pole-placement & firefly algorithm approach Performance comparison of optimized controller tuning techniques for voltage stability Robust load frequency control in multi-area power system: An LMI approach Level control of two tank system by fractional order integral state feedback controller tuned by PSO with experimental validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1