Inverter fed induction machine condition monitoring using the bispectrum

N. Arthur, J. Penman
{"title":"Inverter fed induction machine condition monitoring using the bispectrum","authors":"N. Arthur, J. Penman","doi":"10.1109/HOST.1997.613489","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of the unnormalised bispectrum as a signal processing tool for the diagnosis of inverter-fed induction machine fault conditions. Increasingly, induction machines are supplied from nonsinusoidal, variable speed sources which increases the complexity and magnitude of the machine cage vibration. In addition, contamination of the vibration signal from both known and unknown sources makes accurate fault detection more difficult. This paper addresses both issues, experimental results are presented and it is shown that the unnormalised bispectrum improves on the diagnostic capability of more conventional second order statistical measures.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper proposes the use of the unnormalised bispectrum as a signal processing tool for the diagnosis of inverter-fed induction machine fault conditions. Increasingly, induction machines are supplied from nonsinusoidal, variable speed sources which increases the complexity and magnitude of the machine cage vibration. In addition, contamination of the vibration signal from both known and unknown sources makes accurate fault detection more difficult. This paper addresses both issues, experimental results are presented and it is shown that the unnormalised bispectrum improves on the diagnostic capability of more conventional second order statistical measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用双谱技术实现变频调速感应电机的状态监测
本文提出利用非归一化双谱作为一种信号处理工具来诊断变频感应电机的故障状况。越来越多的感应电机由非正弦、变速源提供,这增加了机器笼振动的复杂性和强度。此外,已知和未知来源的振动信号的污染使得准确的故障检测变得更加困难。本文讨论了这两个问题,并给出了实验结果,结果表明,非归一化双谱提高了传统二阶统计测度的诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1