Miniaturized systems with microchips for four isothermal amplification reactions

Xing Chen, Lulu Zhang, D. Cui
{"title":"Miniaturized systems with microchips for four isothermal amplification reactions","authors":"Xing Chen, Lulu Zhang, D. Cui","doi":"10.1109/BMEI.2015.7401539","DOIUrl":null,"url":null,"abstract":"A real-time fluorescence detection biomedical system with a microfluidic chip was developed for loop-mediated isothermal amplification (LAMP) reactions. Two kinds of microfluidic chips with linear microchannels or microcells were designed and fabricated by MEMS technology and thin-casting method. Both traditional centrifugal tubes and microfluidic chips were used for LAMP reactions. Based on the experimental results of end-point fluorescence detection, the microfluidic chip can be successfully used for LAMP reactions. And then our real-time fluorescence detection biomedical system with a microfluidic chip was used to implement positive reaction and negative control. The volume of the LAMP reaction was greatly reduced from about 25 μL to 2 μL~3 μL and the reaction time can be reduced from one hour to half an hour by using our real-time fluorescence detection biomedical system. This biomedical system has the potential for point-of-care diagnostics (POCT) with the many advantages, such as not high cost, short analysis and detection time, not much reagent and sample consumption and so on.","PeriodicalId":119361,"journal":{"name":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2015.7401539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A real-time fluorescence detection biomedical system with a microfluidic chip was developed for loop-mediated isothermal amplification (LAMP) reactions. Two kinds of microfluidic chips with linear microchannels or microcells were designed and fabricated by MEMS technology and thin-casting method. Both traditional centrifugal tubes and microfluidic chips were used for LAMP reactions. Based on the experimental results of end-point fluorescence detection, the microfluidic chip can be successfully used for LAMP reactions. And then our real-time fluorescence detection biomedical system with a microfluidic chip was used to implement positive reaction and negative control. The volume of the LAMP reaction was greatly reduced from about 25 μL to 2 μL~3 μL and the reaction time can be reduced from one hour to half an hour by using our real-time fluorescence detection biomedical system. This biomedical system has the potential for point-of-care diagnostics (POCT) with the many advantages, such as not high cost, short analysis and detection time, not much reagent and sample consumption and so on.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微型化系统与微芯片四个等温扩增反应
研制了一种基于微流控芯片的实时荧光生物医学检测系统,用于环介导等温扩增(LAMP)反应。采用微机电系统(MEMS)技术和薄铸工艺,设计制作了线性微通道和微单元两种微流控芯片。LAMP反应采用传统的离心管和微流控芯片。基于端点荧光检测的实验结果,该微流控芯片可成功用于LAMP反应。利用微流控芯片实时荧光检测生物医学系统进行阳性反应和阴性对照。利用实时荧光检测生物医学系统,将LAMP反应的体积从25 μL左右大大减少到2 μL~3 μL,反应时间从1小时缩短到半小时。该生物医学系统具有成本不高、分析检测时间短、试剂和样品消耗少等优点,具有实现即时诊断(POCT)的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECG signal compressed sensing using the wavelet tree model Development of a quantifiable optical reader for lateral flow immunoassay A tightly secure multi-party-signature protocol in the plain model Breast mass detection with kernelized supervised hashing 3D reconstruction of human enamel Ex vivo using high frequency ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1