Weighted Matchings via Unweighted Augmentations

Buddhima Gamlath, S. Kale, Slobodan Mitrovic, O. Svensson
{"title":"Weighted Matchings via Unweighted Augmentations","authors":"Buddhima Gamlath, S. Kale, Slobodan Mitrovic, O. Svensson","doi":"10.1145/3293611.3331603","DOIUrl":null,"url":null,"abstract":"We design a generic method to reduce the task of finding weighted matchings to that of finding short augmenting paths in unweighted graphs. This method enables us to provide efficient implementations for approximating weighted matchings in the massively parallel computation (MPC) model and in the streaming model. For the MPC and the multi-pass streaming model, we show that any algorithm computing a (1-δ)-approximate unweighted matching in bipartite graphs can be translated into an algorithm that computes a (1-(ε(δ))-approximate maximum weighted matching. Furthermore, this translation incurs only a constant factor (that depends on ε > 0) overhead in the complexity. Instantiating this with the current best MPC algorithm for unweighted matching yields a (1 - ε)-approximation algorithm for maximum weighted matching that uses Oε(log log n) rounds, O(m/n) machines per round, and O(npoly(logn)) memory per machine. This improves upon the previous best approximation guarantee of (1/2-ε) for weighted graphs. In the context of single-pass streaming with random edge arrivals, our techniques yield a (1/2+c)-approximation algorithm thus breaking the natural barrier of 1/2.","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

We design a generic method to reduce the task of finding weighted matchings to that of finding short augmenting paths in unweighted graphs. This method enables us to provide efficient implementations for approximating weighted matchings in the massively parallel computation (MPC) model and in the streaming model. For the MPC and the multi-pass streaming model, we show that any algorithm computing a (1-δ)-approximate unweighted matching in bipartite graphs can be translated into an algorithm that computes a (1-(ε(δ))-approximate maximum weighted matching. Furthermore, this translation incurs only a constant factor (that depends on ε > 0) overhead in the complexity. Instantiating this with the current best MPC algorithm for unweighted matching yields a (1 - ε)-approximation algorithm for maximum weighted matching that uses Oε(log log n) rounds, O(m/n) machines per round, and O(npoly(logn)) memory per machine. This improves upon the previous best approximation guarantee of (1/2-ε) for weighted graphs. In the context of single-pass streaming with random edge arrivals, our techniques yield a (1/2+c)-approximation algorithm thus breaking the natural barrier of 1/2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过非加权增强进行加权匹配
我们设计了一种通用的方法,将寻找加权匹配的任务简化为在未加权图中寻找短增径的任务。该方法使我们能够在大规模并行计算(MPC)模型和流模型中为近似加权匹配提供有效的实现。对于MPC和多通道流模型,我们证明了在二部图中计算(1-δ)-近似无加权匹配的任何算法都可以转化为计算(1-(ε(δ))-近似最大加权匹配的算法。此外,这种转换在复杂性中只会产生一个常数因子(取决于ε >)开销。用当前最佳的非加权匹配MPC算法实例化该算法,可以得到一个(1 - ε)近似算法,用于最大加权匹配,该算法使用Oε(log logn)轮,每轮使用O(m/n)台机器,每台机器使用O(npoly(logn))内存。这改进了之前加权图的最佳近似保证(1/2-ε)。在具有随机边缘到达的单次流的背景下,我们的技术产生(1/2+c)-近似算法,从而打破了1/2的自然屏障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2019 Principles of Distributed Computing Doctoral Dissertation Award How to Spread a Rumor: Call Your Neighbors or Take a Walk? Massively Parallel Computation of Matching and MIS in Sparse Graphs Vorpal Message Reduction in the LOCAL Model is a Free Lunch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1