{"title":"Evolutionary Approaches and Their Applications to Distributed Systems","authors":"T. Weise, R. Chiong","doi":"10.4018/978-1-60566-798-0.ch006","DOIUrl":null,"url":null,"abstract":"The ubiquitous presence of distributed systems has drastically changed the way the world interacts, and impacted not only the economics and governance but also the society at large. It is therefore important for the architecture and infrastructure within the distributed environment to be continuously renewed in order to cope with the rapid changes driven by the innovative technologies. However, many problems in distributed computing are either of dynamic nature, large scale, NP complete, or a combination of any of these. In most cases, exact solutions are hardly found. As a result, a number of intelligent nature-inspired algorithms have been used recently, as these algorithms are capable of achieving good quality solutions in reasonable computational time. Among all the nature-inspired algorithms, evolutionary algorithms are considerably the most extensively applied ones. This chapter presents a systematic review of evolutionary algorithms employed to solve various problems related to distributed systems. The review is aimed at providing an insight of evolutionary approaches, in particular genetic algorithms and genetic programming, in solving problems in five different areas of network optimization: network topology, routing, protocol synthesis, network security, and parameter settings and configuration. Some interesting applications from these areas will be discussed in detail with the use of illustrative examples.","PeriodicalId":325405,"journal":{"name":"Intelligent Systems for Automated Learning and Adaptation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems for Automated Learning and Adaptation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-60566-798-0.ch006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The ubiquitous presence of distributed systems has drastically changed the way the world interacts, and impacted not only the economics and governance but also the society at large. It is therefore important for the architecture and infrastructure within the distributed environment to be continuously renewed in order to cope with the rapid changes driven by the innovative technologies. However, many problems in distributed computing are either of dynamic nature, large scale, NP complete, or a combination of any of these. In most cases, exact solutions are hardly found. As a result, a number of intelligent nature-inspired algorithms have been used recently, as these algorithms are capable of achieving good quality solutions in reasonable computational time. Among all the nature-inspired algorithms, evolutionary algorithms are considerably the most extensively applied ones. This chapter presents a systematic review of evolutionary algorithms employed to solve various problems related to distributed systems. The review is aimed at providing an insight of evolutionary approaches, in particular genetic algorithms and genetic programming, in solving problems in five different areas of network optimization: network topology, routing, protocol synthesis, network security, and parameter settings and configuration. Some interesting applications from these areas will be discussed in detail with the use of illustrative examples.