A Dual Band Shark Fin Integrated Vehicle Antenna For 5G and Wi-Max Applications

Sabah Mahjabeen Sarwar, M. F. Chowdhury, H. Das
{"title":"A Dual Band Shark Fin Integrated Vehicle Antenna For 5G and Wi-Max Applications","authors":"Sabah Mahjabeen Sarwar, M. F. Chowdhury, H. Das","doi":"10.1109/ICTP48844.2019.9041812","DOIUrl":null,"url":null,"abstract":"Automobiles connectivity to each other and with other infrastructure (e.g. power grid, base stations etc.) are becoming more popular. The advancement in autonomous vehicle and Internet of Things (IoTs) gives the challenge to incorporate high efficiency antennas into the vehicle for wireless communication. However, the transmitters and receivers need to be low-profile, high bandwidth, high gain, and cost effective to enable vehicle telematics. In this paper, a dual band low profile shark fin integrated multi-input multi-output (MIMO) antenna is proposed for 5G and Wi-Max communications. Initially, a corporate fed patch antenna array and a quasi- Yagi antenna is designed for 5G and Wi-Max frequency bands respectively. These two optimized antennas are vertically incorporated, and further optimized to work for dual band applications at 26 GHz and 5.5 GHz. The effects of the gap and parasitic elements between the antennas on the resonance and realized gain pattern are parametrically studied. The simulation results show that the dual band antenna operates from 5.16 GHz to 6.05 GHz and 25.625 GHz to 26.36 GHz with 10 dB return loss bandwidth with a realized gain of 4.43 dB at 5.5 GHz and 4.79 dB at 26 GHz. The scattering parameters, realized gain, and 3D radiation pattern are presented in the results section.","PeriodicalId":127575,"journal":{"name":"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTP48844.2019.9041812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automobiles connectivity to each other and with other infrastructure (e.g. power grid, base stations etc.) are becoming more popular. The advancement in autonomous vehicle and Internet of Things (IoTs) gives the challenge to incorporate high efficiency antennas into the vehicle for wireless communication. However, the transmitters and receivers need to be low-profile, high bandwidth, high gain, and cost effective to enable vehicle telematics. In this paper, a dual band low profile shark fin integrated multi-input multi-output (MIMO) antenna is proposed for 5G and Wi-Max communications. Initially, a corporate fed patch antenna array and a quasi- Yagi antenna is designed for 5G and Wi-Max frequency bands respectively. These two optimized antennas are vertically incorporated, and further optimized to work for dual band applications at 26 GHz and 5.5 GHz. The effects of the gap and parasitic elements between the antennas on the resonance and realized gain pattern are parametrically studied. The simulation results show that the dual band antenna operates from 5.16 GHz to 6.05 GHz and 25.625 GHz to 26.36 GHz with 10 dB return loss bandwidth with a realized gain of 4.43 dB at 5.5 GHz and 4.79 dB at 26 GHz. The scattering parameters, realized gain, and 3D radiation pattern are presented in the results section.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于5G和Wi-Max应用的双频鱼翅集成车载天线
汽车之间以及与其他基础设施(如电网、基站等)的连接正变得越来越流行。随着自动驾驶汽车和物联网(iot)的发展,将高效天线集成到车辆中用于无线通信的挑战越来越大。然而,发射器和接收器需要低调,高带宽,高增益和成本效益,以实现车辆远程信息处理。本文提出了一种用于5G和Wi-Max通信的双频段低轮廓鱼翅集成多输入多输出(MIMO)天线。最初,公司馈电贴片天线阵列和准八木天线分别设计用于5G和Wi-Max频段。这两个优化的天线垂直集成,并进一步优化,适用于26 GHz和5.5 GHz的双频应用。参数化研究了天线间隙和寄生元件对谐振和实现增益图的影响。仿真结果表明,该双频天线工作在5.16 ~ 6.05 GHz和25.625 ~ 26.36 GHz,回波损耗带宽为10 dB,在5.5 GHz和26 GHz时实现增益分别为4.43 dB和4.79 dB。结果部分给出了散射参数、实现增益和三维辐射方向图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis and Comparison of Silicon and Silica Nanowire Based Biochemical Sensors Sensitivity Enhanced Surface Plasmon Resonance (SPR) Sensors with MoS2/Graphene Hybrid Overlayer Hollow-core Photonic Crystal Fiber Sensor for Refractive Index Sensing Fetal Arrhythmia Detection Using Fetal ECG Signal Performance Analysis of an OFDM Optical DQPSK FSO Link considering Strong Atmospheric Turbulence with Pointing Error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1