{"title":"The Analysis of Magnetic Coupling Force to An Energy Harvester with Rotational Frequency Up-Conversion Structure","authors":"Weihan Xu, Anxin Luo, Fei Wang","doi":"10.1109/PowerMEMS54003.2021.9658330","DOIUrl":null,"url":null,"abstract":"This paper proposed the analysis of magnetic coupling force for an energy harvester with rotational frequency up-conversion structure. The harvester consists of a piezoelectric cantilever with a tip magnet and a rotatable disk with a magnet fixed on its edge as the driving magnet, and its operating principle for frequency up-conversion is introduced in detail. Since the magnetization direction of the driving magnet is along the radial direction of disk which is time-varying during the rotation of disk, traditional methods are not suitable for the proposed energy harvester to calculate the magnetic coupling force. Therefore, a novel theoretical model is established. Through both the simulation and the experimental validation, it can be proven that the proposed model has achieved an excellent accuracy and is in good agreement with the practical situation.","PeriodicalId":165158,"journal":{"name":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS54003.2021.9658330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposed the analysis of magnetic coupling force for an energy harvester with rotational frequency up-conversion structure. The harvester consists of a piezoelectric cantilever with a tip magnet and a rotatable disk with a magnet fixed on its edge as the driving magnet, and its operating principle for frequency up-conversion is introduced in detail. Since the magnetization direction of the driving magnet is along the radial direction of disk which is time-varying during the rotation of disk, traditional methods are not suitable for the proposed energy harvester to calculate the magnetic coupling force. Therefore, a novel theoretical model is established. Through both the simulation and the experimental validation, it can be proven that the proposed model has achieved an excellent accuracy and is in good agreement with the practical situation.