{"title":"Effect of dimensionality reduction on performance in artificial neural network for user authentication","authors":"S. Chauhan, K. Prema","doi":"10.1109/IADCC.2013.6514327","DOIUrl":null,"url":null,"abstract":"Security is an important concern for today's generation, where keystroke-scan had come out as a milestone. In this paper, a comparison approach is presented for user authentication using keystroke dynamics. Here we have shown the effect of Dimensionality Reduction techniques on the performance and the misclassification rate is between 9.17% and 9.53%. It helps in improving the performance of the system after reducing the dimensions of input data. We have used three dimensional reduction techniques like: Principal Component Analysis (PCA), Multidimensional scaling (MDS), and probabilistic PCA. Here, PCA provide 9.17% misclassification rate with better performance for keystroke samples of 10 users and each user is having 400 samples for the same password.","PeriodicalId":325901,"journal":{"name":"2013 3rd IEEE International Advance Computing Conference (IACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2013.6514327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Security is an important concern for today's generation, where keystroke-scan had come out as a milestone. In this paper, a comparison approach is presented for user authentication using keystroke dynamics. Here we have shown the effect of Dimensionality Reduction techniques on the performance and the misclassification rate is between 9.17% and 9.53%. It helps in improving the performance of the system after reducing the dimensions of input data. We have used three dimensional reduction techniques like: Principal Component Analysis (PCA), Multidimensional scaling (MDS), and probabilistic PCA. Here, PCA provide 9.17% misclassification rate with better performance for keystroke samples of 10 users and each user is having 400 samples for the same password.