Effect of dimensionality reduction on performance in artificial neural network for user authentication

S. Chauhan, K. Prema
{"title":"Effect of dimensionality reduction on performance in artificial neural network for user authentication","authors":"S. Chauhan, K. Prema","doi":"10.1109/IADCC.2013.6514327","DOIUrl":null,"url":null,"abstract":"Security is an important concern for today's generation, where keystroke-scan had come out as a milestone. In this paper, a comparison approach is presented for user authentication using keystroke dynamics. Here we have shown the effect of Dimensionality Reduction techniques on the performance and the misclassification rate is between 9.17% and 9.53%. It helps in improving the performance of the system after reducing the dimensions of input data. We have used three dimensional reduction techniques like: Principal Component Analysis (PCA), Multidimensional scaling (MDS), and probabilistic PCA. Here, PCA provide 9.17% misclassification rate with better performance for keystroke samples of 10 users and each user is having 400 samples for the same password.","PeriodicalId":325901,"journal":{"name":"2013 3rd IEEE International Advance Computing Conference (IACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2013.6514327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Security is an important concern for today's generation, where keystroke-scan had come out as a milestone. In this paper, a comparison approach is presented for user authentication using keystroke dynamics. Here we have shown the effect of Dimensionality Reduction techniques on the performance and the misclassification rate is between 9.17% and 9.53%. It helps in improving the performance of the system after reducing the dimensions of input data. We have used three dimensional reduction techniques like: Principal Component Analysis (PCA), Multidimensional scaling (MDS), and probabilistic PCA. Here, PCA provide 9.17% misclassification rate with better performance for keystroke samples of 10 users and each user is having 400 samples for the same password.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降维对人工神经网络用户认证性能的影响
安全是当今这代人的一个重要问题,键盘扫描已经成为一个里程碑。本文提出了一种基于击键动力学的用户认证比较方法。结果表明,降维技术对分类性能的影响在9.17% ~ 9.53%之间。在降低了输入数据的维数后,有助于提高系统的性能。我们使用了三维降维技术,如主成分分析(PCA)、多维尺度(MDS)和概率PCA。这里,PCA对10个用户的击键样本提供了9.17%的误分类率和更好的性能,每个用户对相同的密码有400个样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A competent design of 2∶1 multiplexer and its application in 1-bit full adder cell Learning algorithms For intelligent agents based e-learning system Preamble-based timing synchronization for OFDM systems An efficient Self-organizing map learning algorithm with winning frequency of neurons for clustering application Comparison of present-day networking and routing protocols on underwater wireless communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1