{"title":"NFA reduction for regular expressions matching using FPGA","authors":"V. Kosar, M. Zádník, J. Korenek","doi":"10.1109/FPT.2013.6718381","DOIUrl":null,"url":null,"abstract":"Many algorithms have been proposed to accelerate regular expression matching via mapping of a nondeterministic finite automaton into a circuit implemented in an FPGA. These algorithms exploit unique features of the FPGA to achieve high throughput. On the other hand the FPGA poses a limit on the number of regular expressions by its limited resources. In this paper, we investigate applicability of NFA reduction techniques - a formal aparatus to reduce the number of states and transitions in NFA prior to its mapping into FPGA. The paper presents several NFA reduction techniques, each with a different reduction power and time complexity. The evaluation utilizes regular expressions from Snort and L7 decoder. The best NFA reduction algorithms achieve more than 66% reduction in the number of states for a Snort ftp module. Such a reduction translates directly into 66% LUT-FF pairs saving in the FPGA.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Many algorithms have been proposed to accelerate regular expression matching via mapping of a nondeterministic finite automaton into a circuit implemented in an FPGA. These algorithms exploit unique features of the FPGA to achieve high throughput. On the other hand the FPGA poses a limit on the number of regular expressions by its limited resources. In this paper, we investigate applicability of NFA reduction techniques - a formal aparatus to reduce the number of states and transitions in NFA prior to its mapping into FPGA. The paper presents several NFA reduction techniques, each with a different reduction power and time complexity. The evaluation utilizes regular expressions from Snort and L7 decoder. The best NFA reduction algorithms achieve more than 66% reduction in the number of states for a Snort ftp module. Such a reduction translates directly into 66% LUT-FF pairs saving in the FPGA.