Machine-learning-based perceptual video coding in wireless multimedia communications

Shengxi Li, Mai Xu, Yufan Liu, Z. Ding
{"title":"Machine-learning-based perceptual video coding in wireless multimedia communications","authors":"Shengxi Li, Mai Xu, Yufan Liu, Z. Ding","doi":"10.1049/PBTE081E_CH8","DOIUrl":null,"url":null,"abstract":"We present in this chapter the advantage of applying machine-learning-based perceptual coding strategies in relieving bandwidth limitation for wireless multimedia communications. Typical video-coding standards, especially the state-of-the-art high efficiency video coding (HEVC) standard as well as recent research progress on perceptual video coding, are included in this chapter. We further demonstrate an example that minimizes the overall perceptual distortion by modeling subjective quality with machine-learning-based saliency detection. We also present several promising directions in learning-based perceptual video coding to further enhance wireless multimedia communication experience.","PeriodicalId":358911,"journal":{"name":"Applications of Machine Learning in Wireless Communications","volume":"19 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Machine Learning in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBTE081E_CH8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present in this chapter the advantage of applying machine-learning-based perceptual coding strategies in relieving bandwidth limitation for wireless multimedia communications. Typical video-coding standards, especially the state-of-the-art high efficiency video coding (HEVC) standard as well as recent research progress on perceptual video coding, are included in this chapter. We further demonstrate an example that minimizes the overall perceptual distortion by modeling subjective quality with machine-learning-based saliency detection. We also present several promising directions in learning-based perceptual video coding to further enhance wireless multimedia communication experience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线多媒体通信中基于机器学习的感知视频编码
在本章中,我们介绍了应用基于机器学习的感知编码策略在缓解无线多媒体通信带宽限制方面的优势。本章介绍了典型的视频编码标准,特别是目前最先进的高效视频编码(HEVC)标准以及感知视频编码的最新研究进展。我们进一步展示了一个例子,通过使用基于机器学习的显著性检测对主观质量进行建模,从而最大限度地减少了整体感知失真。我们还提出了基于学习的感知视频编码的几个有前途的方向,以进一步提高无线多媒体通信体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-driven vehicular mobility modeling and prediction Back Matter Machine-learning-based channel estimation Deep learning for indoor localization based on bimodal CSI data Compressive sensing for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1